
AI时代突围:普通程序员的大模型应用实战
文章平均质量分 92
AI浪潮席卷,非AI专业程序员如何不掉队?本专栏专为普通开发者打造!无需深厚算法功底,聚焦工程化落地。系统学习大模型基础(如提示工程)、掌握核心开发技能(OpenAI API, LangChain框架)、实践主流应用模式(RAG, Agent聊天机器人)、了解模型选型与优化(开源模型、微调)。
无心水
专业,专注,开源,自由
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【程序员AI入门:趋势】22、AI发展全景解析:技术演进、行业变革与未来趋势深度洞察
人工智能作为引领第四次工业革命的核心技术,正以史无前例的速度重塑全球产业格局与社会形态。本文将系统梳理AI从弱智能到通用智能的演进脉络,深度剖析2024-2025年技术突破的底层逻辑,全景呈现AI在医疗、金融、制造等十大行业的变革实践,并前瞻性研判未来十年技术演进与社会影响的关键走向。通过整合权威机构数据与前沿应用案例,为读者构建一幅AI发展的完整图景,揭示这一技术革命背后的机遇与挑战。原创 2025-06-19 14:29:59 · 1562 阅读 · 1 评论 -
【程序员AI入门:模型】21.驾驭AI浪潮:大模型快速迭代的应对之道
驾驭AI浪潮:大模型快速迭代的应对之道。构建“技术层弹性架构+资源层成本优化+组织层敏捷响应”的闭环,实现从“被动适配”到“主动引领”的跨越。原创 2025-05-17 09:30:00 · 905 阅读 · 0 评论 -
【程序员AI入门:模型】20.打造你的专属大模型:从数据到落地的微调全攻略
创建属于自己的大模型,核心在于通过**模型微调(Fine-tuning)**技术,利用预训练模型的基础能力,结合特定领域数据进行针对性优化。原创 2025-05-17 09:00:00 · 1120 阅读 · 0 评论 -
【程序员AI入门:模型】19.开源模型工程化全攻略:从选型部署到高效集成,LangChain与One-API双剑合璧
本文介绍了从模型选型到工程化集成的全流程,重点包括模型评估、快速验证、依赖管理、服务化封装、性能优化、持续维护以及高级集成方案。通过多维度评估体系选择合适模型,利用Hugging Face API快速验证效果。工程化集成部分展示了依赖管理、FastAPI服务化封装等技术。性能优化涉及计算图优化和量化压缩策略。持续维护部分介绍了实时监控和自动化更新流水线。最后,高级集成方案展示了LangChain与One-API的深度融合,实现多模型供应商无缝切换和本地化部署,确保数据安全。原创 2025-05-16 14:00:00 · 1121 阅读 · 1 评论 -
【程序员AI入门:模型】18.Hugging Face全攻略:从模型调用到生产部署,一站式开发指南
Hugging Face 作为 AI 界的“GitHub”,构建了庞大的开源生态,为开发者提供了从模型获取、训练到部署的全流程工具链:模型生态:超 20 万开源模型(如 Llama、Qwen、Stable Diffusion)覆盖 NLP、CV、语音等多领域,支持文本生成、翻译、情感分析等 100+ 任务。工具矩阵:`transformers` 库简化模型调用,`Datasets` 提供海量预处理数据集,`Gradio`/`Streamlit` 快速部署 Demo,`Huggin原创 2025-05-16 07:00:00 · 1371 阅读 · 0 评论 -
【程序员AI入门:应用】17.大模型统一接入革命:如何轻松管理千模万式?
为集中管理多个大语言模型(LLM)并实现统一调度、监控和成本优化,需构建 **模型网关(Model Gateway)** 架构。原创 2025-05-15 14:00:00 · 824 阅读 · 0 评论 -
【程序员AI入门:应用】16.大模型缓存黑科技:精准与语义双剑合璧,速度成本双杀!
为降低大模型(LLM)使用成本,缓存技术可通过 **存储重复请求结果** 和 **复用相似响应** 实现显著节省。原创 2025-05-14 22:05:32 · 611 阅读 · 0 评论 -
【程序员AI入门:应用】15.长期记忆革命:用mem0让AI记住你的每一句话
要让大语言模型(LLM)具备长期记忆能力,实现"更了解用户"的个性化交互,需通过 **记忆存储+检索增强+动态更新** 的技术组合。原创 2025-05-14 09:28:57 · 1220 阅读 · 0 评论 -
【程序员AI入门:应用】14.智能Agent实战:用LangChain打造会思考的AI助手
本文是使用 LangChain 实现一个 Agent 的分步指南,包含核心概念、代码实现和高级功能扩展。Agent 的核心作用是让大语言模型(LLM)能够动态调用工具并完成复杂任务。原创 2025-05-14 07:59:25 · 404 阅读 · 0 评论 -
【程序员AI入门:应用】13.从零打造自主推理Agent:分步指南与代码实战
本文是一个基于Python的AI Agent实现方案,涵盖核心模块(规划、记忆、工具)与工作流程。我们将以天气推荐Agent为例,逐步构建一个能够自主感知用户需求、调用API并生成建议的智能系统。原创 2025-05-14 07:00:00 · 833 阅读 · 0 评论 -
【程序员AI入门:应用】12.AI Agent 革命:从聊天机器人到智能工作流的工业级实战
AI Agent是从传统工具向智能体跃迁的范式转变,具备自主环境感知、动态决策推理与多工具执行能力。其核心突破在于依赖大模型(如GPT-4、LLaMA)实现实时任务规划,摆脱了硬编码逻辑。与传统AI工具相比,AI Agent在决策逻辑、记忆系统、执行能力和应用场景上均有显著提升。技术实现上,通过LangChain的AgentExecutor框架实现ReAct(推理-行动)闭环,支持动态任务规划、上下文感知记忆、多模态工具生态和成本敏感型执行。AI Agent的四大核心能力包括动态任务规划、上下文感知记忆、多原创 2025-05-12 17:30:04 · 1099 阅读 · 0 评论 -
【程序员AI入门:应用】11.从零构建智能问答引擎:LangChain + RAG 实战优化指南
本文介绍了构建问答系统的技术选型与核心组件解析,以及RAG(Retrieval-Augmented Generation)全流程实战。首先,推荐了黄金技术栈,包括文本嵌入模型、向量数据库、大语言模型、文档处理框架和检索优化工具,并分析了各组件优势与资源需求。接着,深入解析了核心组件,如多源数据接入中枢DocumentLoader和语义分块工具TextSplitter,提供了代码示例和调优技巧。在RAG全流程实战部分,详细介绍了环境搭建、文档预处理流水线,包括数据目录规范和全流程预处理代码,展示了如何加载文档原创 2025-05-10 23:29:58 · 1360 阅读 · 0 评论 -
【程序员AI入门:应用】10.深度解密RAG:如何让大模型“吃透”你的业务知识?
在大模型时代,通用AI理解垂直领域业务知识成为行业刚需。RAG(检索增强生成)技术通过结合外部知识库检索与大模型生成能力,有效突破大模型的知识边界。RAG的核心流程包括索引、检索和生成三个步骤,能够实现低成本知识注入、提升泛化能力,并增强回答的可解释性。与传统微调方案相比,RAG具有知识更新速度快、泛化能力强等优势,适用于企业知识库问答等场景。RAG技术通过动态检索和生成模型的双轮驱动,为垂直领域业务知识的理解与应用提供了高效解决方案。原创 2025-05-09 10:55:57 · 687 阅读 · 0 评论 -
【程序员AI入门:应用】9.用LangChain打造会“角色扮演”的智能聊天机器人
立即行动:尝试将聊天历史存储改为文件或数据库,让你的机器人“记住前世今生”!🚀关键收获 LangChain核心抽象:Runnable 接口是链式调用的基础,ChatMessageHistory 管理上下文。 角色扮演本质:通过系统提示词 + 历史消息,动态塑造AI的“人格”。 性能优化:trim_messages 确保上下文不超限,结合 tiktoken 精准计算Token。原创 2025-05-08 23:35:47 · 1462 阅读 · 0 评论 -
【程序员AI入门:应用】8.LangChain核心抽象全解析:从模型交互到工作流编排的模块化开发指南
LangChain是一个模块化的AI应用开发框架,通过分层抽象将复杂的大模型应用拆解为可复用的组件,实现智能系统的积木式搭建。其核心架构分为基础层、逻辑层、记忆层、增强层和编排层,每层解决特定维度的问题,共同构建从数据输入到智能输出的完整链路。基础层通过模型抽象和文档抽象,统一多模型接口并处理非结构化数据;逻辑层通过链式抽象和智能体抽象,实现复杂逻辑的模块化组合和自主决策;记忆层通过记忆抽象,赋予模型持续认知能力;增强层通过工具抽象和检索抽象,扩展模型的能力边界。LangChain的模块化设计使得开发者能够原创 2025-05-08 07:30:00 · 577 阅读 · 0 评论 -
【程序员AI入门:应用】7.LangChain深度解析:重塑LLM应用开发范式
LangChain作为AI应用开发的新基建,通过标准化接口连接大语言模型(LLM)与现实世界,显著降低了开发门槛和周期。其核心价值在于解耦LLM的基础能力与工程实现,开发者可直接调用预训练模型,专注于领域逻辑编排。LangChain的模块化架构包括六大核心组件(Models、Indexes、Memory、Chains、Agents、Tools),支持复杂逻辑的灵活组装。关键技术如ReAct架构、LCEL声明式编程和流式处理,进一步提升了开发效率和用户体验。应用场景涵盖智能文档处理、金融决策支持、自动化工作流原创 2025-05-06 19:50:06 · 704 阅读 · 0 评论 -
【程序员AI入门:应用】6.OpenAI为什么是LLM编程标准
OpenAI API 的设计已成为大模型编程的行业标杆,多数后续模型和中间件项目(如代理服务)均兼容其接口。学习一个 API 即可触达多种模型,降低学习成本。是开发基础。工具参数的场景:需构建 Agent(如调用外部 API 或服务)时,需深入tools和。兼容性注意:不同模型或服务商可能对参数取值范围有差异,需参考具体文档。核心要点:流式应答是聊天场景的优化手段,通过 SSE 技术实现逐 Token 推送。工具调用扩展模型能力,需结合 tools 参数定义外部函数。原创 2025-05-07 14:00:00 · 605 阅读 · 0 评论 -
【程序员AI入门:基础】5.提示工程怎么释放LLM的潜力
通过系统化提示工程,可将LLM从“文本生成器”升级为真正的“认知协作者”,在复杂任务中达到人类专家级表现。提示工程不是简单的技巧堆砌,而是融合语言学、认知科学、软件工程的综合能力。通过系统化设计,我们可以将LLM从“通用聊天机器人”转化为垂直领域的“超级协作者”,在代码开发、数据分析、创意设计等场景中实现效率指数级提升。记住:最好的提示词永远是下一个——持续迭代,是释放LLM潜力的终极密钥。原创 2025-05-06 10:59:02 · 1066 阅读 · 2 评论 -
【程序员AI入门:基础】4.如何高效与大模型沟通
掌握这些技巧,您可以将大模型从“随机应答器”升级为“智能协作者”,显著提升工作效率。尝试从今天的一个优化提问开始实践吧!原创 2025-05-05 10:31:10 · 934 阅读 · 0 评论 -
【程序员AI入门:基础】3.程序员应该知道的LLM基础知识
本文深入解析了大型语言模型(LLM)的核心技术,涵盖从架构原理到工程实践的全流程。首先,介绍了Transformer架构及其核心组件,包括自注意力机制、多头注意力和位置编码,并对比了自回归模型(如GPT)与双向模型(如BERT)的特点。其次,详细探讨了LLM的训练体系,从预训练到微调,重点介绍了LoRA等参数高效微调方法。接着,分析了数据处理中的分词与文本向量化技术,展示了如何将文本从离散符号转化为连续语义编码。此外,文章还讨论了推理与生成中的解码策略、温度调参以及成本优化方法。最后,介绍了模型部署中的压缩原创 2025-05-03 10:15:11 · 971 阅读 · 2 评论 -
【程序员AI入门:基础】2.普通人应该知道的LLM基础知识
LLM(Large Language Model,大语言模型)是一种人工智能程序,通过“阅读”海量文本数据(如书籍、网页),学习语言规律,能够生成人类可读的文本、回答问题或执行任务。模型从海量文本中学习词汇、语法、事实和逻辑关系(如“猫吃鱼”是合理组合,“鱼吃猫”会被修正)。用户输入提示词(Prompt)→模型根据概率生成连贯回复。输出:“步骤1:准备食材;输入:“如何做西红柿炒蛋?原创 2025-05-03 09:28:57 · 607 阅读 · 0 评论 -
【程序员AI入门:基础】1.普通程序员如何迈进AI时代?
在AI时代,程序员面临角色重构和编程模式转型的挑战与机遇。传统程序员需从纯代码转向AI工程化,聚焦场景拆解、工具整合和流程优化。AI应用开发的核心是“模型即服务”,传统硬编码逻辑逐渐被模型预测替代。程序员需掌握数学基础、编程语言与工具链、机器学习理论等核心知识体系,并在计算机视觉、自然语言处理、生成式AI和AI工程化等方向进行专项突破。通过Kaggle竞赛和工业级项目开发,程序员可以系统化提升能力,并参与开源项目贡献,持续追踪前沿技术,构建AI时代竞争力。原创 2025-05-01 23:32:06 · 652 阅读 · 2 评论