统计显著性检验在生物信息学中的应用
1 引言
统计显著性检验是科学研究中不可或缺的一部分,尤其是在生物信息学领域。通过这些检验,研究人员能够确定观察到的数据差异是否具有统计学意义,而非偶然发生。本篇文章将深入探讨统计显著性检验在生物信息学中的应用,包括假设检验、P值的概念、常用的统计测试方法、多重比较问题以及效应量的考量。
2 假设检验
假设检验是统计显著性检验的核心,它帮助我们判断某个假设是否成立。在生物信息学研究中,通常会设立两个假设:零假设($H_0$)和备择假设($H_1$)。零假设通常是默认的状态,即认为观察到的数据差异是由于随机波动引起的;而备择假设则表示数据之间存在真实的差异。
2.1 设定假设
- 零假设 ($H_0$) :数据之间没有显著差异,任何观察到的差异都是由随机误差引起的。
- 备择假设 ($H_1$) :数据之间存在显著差异,观察到的差异不是由随机误差引起的。
2.2 示例
假设我们要比较两种药物对某种疾病的疗效。零假设可以是“两种药物的疗效没有显著差异”,而备择假设则是“两种药物的疗效存在显著差异”。
3 P值的概念
P值是衡量数据支持备择假设的程度的一个概率值。具体来说,P值表示在零假设为真的情况下,观察到当前数据或更极端数据的概率。通常,P值小于某个预设的显著性水平(如0.05)时,我们会拒绝零假设,认为数据支持备择假设。