以前优化函数时的决策目标总是: min 或 max。最近读论文时,发现不少高质量的论文中总是写成: inf 或 sup。
inf 是 infimum 的简称,sup 是 supremum 的简称。
例如函数: f(x)=sin(x)/xf(x)=\sin(x)/xf(x)=sin(x)/x 的图像:
该函数在 x=0x=0x=0 处没有值,因此其最大值即 max 不存在,但是我们可以看出 f(x)f(x)f(x) 最小的上界为 1(不小于它最大值的值,都是它的上界),即 supf(x)=1\sup f(x)=1supf(x)=1。
sup 的定义:一个集合最小的上界
inf 的定义:一个集合最大的下界