目录
声明
由于本文章其中一些代码是本人很久以前写的,而有一些是本人现在写的,所以码风有些不同,请勿介意。这是本人肝了两个星期才完成的文章,希望你们能给我点赞收藏加关注。最好给我评论鼓励一下我哦,谢谢!
基础知识
图(graph)是一种网状数据结构,用于描述对象的集合以及对象之间的关系。其中,对象用顶点(vertex),也称为节点(node),简称点。对象之间的关系用连接顶点的边(edge)表示。若图中的每条边是单向的,则该图称为有向图;若图中的每条边是双向的,则该图称为无向图;若图中的每条边有权重,则该图称为加权图。研究图的数学分支被称为图论,这个我们以后会深入讲解。
图的表示
邻接矩阵
用一个二维数组标记两个节点是否相邻。 表示节点
能到达节点
。若该图为加权图,则
标记节点
与节点
之间的边权,如果没有边的话通常设置其为无穷大或
。
实现方式
int G[3500][3500];//声明部分
int n, m;//点数与边数
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; ++ i)
{
int u, v, w;
cin >> u >> v;//不加权
cin >> w;//加权
G[u][v] = true;//有向图
G[v][u] = true;//无向图
G[u][v] = w;//有向加权图
G[v][u] = w;//无向加权图
}
return 0;
}
邻接表
用邻接表更节省空间,因为邻接表使用的是 vector。其中 存储节点
能直接到达的节点。
实现方式
不加权图
vector<int> G[3500];//声明部分
int n, m;//点数与边数
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; ++ i)
{
int u, v, w;
cin >> u >> v;//不加权
cin >> w;//加权
G[u].push_back(v)//有向图
G[v].push_back(u)//无向图
}
return 0;
}
加权图
struct Node{
int v, w;
};
vector<Node> G[3500];//声明部分
int n, m;//点数与边数
int main()
{
cin >> n >> m;
for (int i = 1; i <= m; ++ i)
{
int u, v, w;
cin >> u >> v;//不加权
cin >> w;//加权
G[u].push_back({v, w})//有向图
G[v].push_back({u, w})//无向图
}
return 0;
}
其实还有一种叫链式前向星的表示方式,后面会讲到。
连通图的遍历
深度优先遍历
选择一个顶点为起点(通常为 号节点),并递归遍历其所有的邻接节点。为了防止一个节点被重复访问,我们需要一个
数组来标记一个节点有没有被访问过。
实现方式(无向图)
void dfs(int u){
cout<<u<<" ";
vis[u]=true;
for(auto v:G[u]){
if(vis[v]==true){
continue;
}
dfs(v);
}
}
广度优先遍历
选择一个顶点为起点,再按照与起点的距离从小到大进行遍历,与广度优先搜索类似。
实现方式(无向图)
void bfs(int s){
queue<pair<int,int>> q;
vis[s]=true;
q.push({s,0});
while(!q.empty()){
pair<int,int> t=q.front();
q.pop();
dis[t.first]=t.second;
for(auto v:G[t.first]){
if(vis[v]==true){
continue;
}
vis[v]=true;
cout << v << " ";
}
}
}
例题
例题:传递闭包
题面
解法
这题数据可以使用邻接矩阵,所以我们就用邻接矩阵。我们可以从一个顶点开始深度或广度遍历,并将访问到的点标记为 。我们可以枚举每个点
。从点
开始深度或广度遍历,直到遍历完。
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,m,vis[1100000],e[3500][3500];
void dfs(int u){
vis[u]=true;
for(int v=1;v<=n;v++){
if(e[u][v]==false){
continue;
}
if(vis[v]==true){
continue;
}
dfs(v);
}
}
signed main(){
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>e[i][j];
}
}
for(int i=1;i<=n;i++){
memset(vis,false,sizeof vis);
dfs(i);
for(int j=1;j<=n;j++){
cout<<vis[j]<<" ";
}
cout<<endl;
}
return 0;
}
当然也可以用 Floyd 做,这个我们以后会讲到。