9、增强邓格优先语义学:理论与应用

增强邓格优先语义学:理论与应用

在论证框架的研究中,语义学起着至关重要的作用。传统的语义学,如稳定、 grounded 和优先语义学,存在一些局限性。本文将介绍一种增强的优先语义学,它不仅保留了邓格优先语义学的优点,还解决了许多情况下的空扩展问题。

可接受语义的定义

可接受对的定义

可接受对是论证框架中的一个重要概念。给定一个论证框架 $AF = \langle AR, attacks \rangle$,其中 $AR$ 是论点的集合,$attacks$ 是攻击关系的集合。设 $S \subseteq AR$ 是一个无冲突的集合,$H \subseteq AR$。一个对 $(S, H)$ 是可接受的,当且仅当:
1. $S \neq \varnothing$ 或 $H = AR$。
2. $S$ 中的每个论点相对于 $(S, H)$ 是可接受的。

这个定义中的第一个条件确保了每个可接受对的第一个元素非空,除非第二个元素是所有论点的集合。这对于保证语义的非空性非常重要。

最小可接受对

对于一个论证框架,通常存在许多可接受对。为了在这些可接受对中做出选择,我们引入了最小可接受对的概念。设 $|H|$ 表示集合 $H$ 中论点的数量,特别地,$|\varnothing| = 0$。一个对 $(S, H)$ 是最小可接受对,当且仅当它是可接受的,并且其第二个元素 $H$ 在所有可接受对中是最小的(相对于 $| |$)。

例如,在某些论证框架中,$({A, C}, \varnothing)$ 和 $({A}, \varnothing)$ 可能是最小可接受对。

可接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值