面向语义网的悖论描述逻辑
一、引言
语义网作为万维网的下一代发展方向,旨在通过定义网络信息和服务的语义,让计算机程序能够处理和使用网络内容。然而,在这样一个开放、不断变化且协作的环境中,现实世界的知识库和数据很难保证完美无缺。诸如建模错误、从其他形式主义迁移、本体合并和本体演化等原因,都可能导致知识出现不一致的情况。
经典逻辑在处理不一致信息时会出现问题。一旦推理中涉及不一致性,推理就会变得“爆炸”或无意义,即从一组不一致的假设中可以推出任何结论。描述逻辑(DLs)是语义网中本体设计的基石,例如W3C认可的Web本体语言(OWL)的OWL - DL和OWL - Lite子语言都基于DLs。但DLs作为经典一阶逻辑的片段,在面对不一致知识时会失效,因此处理DLs中的不一致性成为了语义网和人工智能领域的重要研究课题。
目前处理DLs中不一致性的方法大致可分为两类:
1. 修复型方法 :这类方法假设不一致性意味着数据存在错误,需要修复以获得一致的本体。例如,找出导致不一致的本体部分,移除或弱化这些部分的公理来恢复一致性。但这种观点被认为过于简单,没有充分利用不一致知识的价值,且在现实世界中,知识的不一致性是常态,不应总是被拒绝。
2. 次协调方法 :这类方法不单纯避免不一致性,而是通过应用非标准推理方法来容忍不一致性,以获得有意义的答案。目前基于Belnap四值语义的次协调方法存在一些局限性,如某些重要推理规则在四值语义中不成立,包括排中律和一些直观的等价关系。此外,还有准经典逻辑(QC)和基于论证理论的混合方法,但它们也存在各自的问题,如QC DLs中排中律仍然不成立,混合方法的论证语义复