基于AMMAS的基因设计优化算法解析
在合成生物学领域,设计具有特定功能的基因构建体是一项关键任务。为了高效地完成这一任务,研究人员提出了一种基于自适应最大 - 最小蚁群系统(AMMAS)的算法,用于指导用户选择最优的生物部件组合。本文将详细介绍该算法的原理、步骤以及应用实例。
1. 算法核心机制
1.1 自适应信息素浓度更新机制
信息素更新机制旨在将更多的信息素浓度分配给短路径,类似于强化学习模式,更好的解决方案将获得更高的强化。信息素更新公式模拟了蚂蚁在访问边上沉积新信息素和信息素蒸发的过程。为防止算法因最差路径和最佳路径之间信息素密度差异过大而陷入局部最优,设计了动态调整信息素挥发系数的公式:
[
\rho(N + 1) = \frac{1}{\log_2(1 + N_c)}
]
在研究中,信息素挥发系数 $\rho$ 逐渐减小,直到 $\frac{1}{\log_2(1 + N_c)} < \rho_{min}$。
1.2 权重系数的自适应变化
为了增强搜索过程的强度和多样性,使找到的解决方案更具鲁棒性,设计了权重系数 $\alpha$ 和 $\beta$ 的动态变化机制。当当前全局最优路径在 50 轮内未发生变化时,通过降低信息素的相对影响并增加启发式信息的相对影响,来保持搜索新解决方案的高能力,防止算法陷入局部最优。$\beta$ 的计算公式如下:
[
\beta = \frac{sl}{3 \cdot sum_column}
]
其中,$sum_column$ 是构建的晶格的总列数,$sl$ 反映了在一次迭代中通过最优解所有边的蚂蚁总