基于LangGraph构建可控制日志分析系统:子图组合与状态管理详解

基于LangGraph构建可控制日志分析系统:子图组合与状态管理详解

在现代AI应用开发中,日志分析和故障处理是保证系统稳定运行的重要环节。本文将详细介绍如何使用LangGraph框架构建一个可控制的日志分析系统,该系统能够自动分析日志、识别故障并生成报告。系统采用模块化设计,通过多个子图的组合实现复杂的业务逻辑。

系统整体架构

本文介绍的日志分析系统采用三层图结构设计:

  1. 故障分析子图(Failure Analysis):负责识别和分析失败的日志记录
  2. 问题总结子图(Question Summarization):负责生成问题摘要和报告
  3. 主入口图(Entry Graph):协调各个子图的执行流程

数据结构定义

日志数据结构

首先,我们定义了日志的基本数据结构:

from typing import TypedDict, Annotated, Optional, List, Dict, Any, get_type_hints
from operator import add
from langgraph.graph import StateGraph, START, END

class Logs(TypedDict):
    id: str  # 日志的唯一标识符
    question: str  # 问题文本
    docs: Optional[List]  # 可选的相关文档列表
    answer: str  # 回答文本
    grade: Optional[int]  # 可选的评分
    grader: Optional[str]  # 可选的评分者
    feedback: Optional[str]  # 可选的反馈信息

这个数据结构包含了日志分析所需的所有关键信息:

  • id:用于唯一标识每条日志记录
  • questionanswer:记录问答对信息
  • gradegraderfeedback:用于质量评估和反馈

故障分析子图

状态定义

class FailureAnalysisState(TypedDict):
    docs: List[Logs]
    failures: List[Logs]
    fa_summary: str

核心功能实现

故障分析子图包含两个主要节点:

1. 获取失败日志
def get_failures(state):
    doce = state['docs']
    failures = [doc for doc in doce if "grade" in doc]
    return {"failures": failures}

这个函数通过检查日志中是否存在grade字段来识别失败的记录。在实际应用中,可能需要根据具体的业务逻辑调整失败识别条件。

2. 生成故障摘要
def generate_summary(state):
    failures = state["failures"]
    # 在实际应用中,这里会调用LLM进行智能分析
    fa_summary = "错误信息分析结果"
    return {"fa_summary": fa_summary}

子图构建

fa_builder = StateGraph(FailureAnalysisState)
fa_builder.add_node("get_failures", get_failures)
fa_builder.add_node("generate_summary", generate_summary)
fa_builder.add_edge(START, "get_failures")
fa_builder.add_edge("get_failures", "generate_summary")
fa_builder.add_edge("generate_summary", END)

问题总结子图

状态定义

class QuestionSummarizationState(TypedDict):
    docs: List[Logs]  # 日志列表
    qs_summary: str  # 问题总结
    report: str  # 报告

功能模块

问题总结子图包含三个处理节点:

1. 生成问题总结
def generate_summary(state):
    docs = state["docs"]
    # 实际应用中会调用summarize函数进行智能总结
    summary = "问题汇总"
    return {"qs_summary": summary}
2. 发送到Slack
def send_to_slack(state):
    qs_summary = state["qs_summary"]
    # 实际应用中会调用report_generation函数
    report = "foo bar baz"
    return {"report": report}
3. 格式化报告
def format_report_for_slack(state):
    report = state["report"]
    # 实际应用中会调用report_format函数
    formatted_report = "固定的格式化报告内容"
    return {"report": formatted_report}

子图构建

qs_builder = StateGraph(QuestionSummarizationState)
qs_builder.add_node("generate_summary", generate_summary)
qs_builder.add_node("send_to_slack", send_to_slack)
qs_builder.add_node("format_report_for_slack", format_report_for_slack)
qs_builder.add_edge(START, "generate_summary")
qs_builder.add_edge("generate_summary", "send_to_slack")
qs_builder.add_edge("send_to_slack", "format_report_for_slack")
qs_builder.add_edge("format_report_for_slack", END)

主入口图

状态定义

主入口图的状态设计使用了Annotated类型注解,支持状态合并:

class EntryGraphState(TypedDict):
    raw_logs: Annotated[List[Dict], add]
    docs: Annotated[List[Logs], add]
    fa_summary: str
    report: str

使用add操作符意味着在状态更新时,列表类型的字段会进行合并操作。

数据转换

def convert_logs_to_docs(state):
    raw_logs = state["raw_logs"]
    docs = raw_logs
    return {"docs": docs}

这个函数负责将原始日志数据转换为标准的Logs格式。

主图构建

entry_builder = StateGraph(EntryGraphState)
entry_builder.add_node("convert_logs_to_docs", convert_logs_to_docs)
entry_builder.add_node("question_summarization", qs_builder.compile())
entry_builder.add_node("failure_analysis", fa_builder.compile())

entry_builder.add_edge(START, "convert_logs_to_docs")
entry_builder.add_edge("convert_logs_to_docs", "question_summarization")
entry_builder.add_edge("convert_logs_to_docs", "failure_analysis")
entry_builder.add_edge("question_summarization", END)
entry_builder.add_edge("failure_analysis", END)

系统执行与测试

测试数据

raw_logs = [{
    "id": "1",
    "question": "如何导入ChatOpenAI?",
    "answer": "要导入ChatOpenAI, 使用: 'from langchain_openai import ChatOpenAI.'",
}, {
    "id": "2",
    "question": "如何使用Chroma向量存储?",
    "answer": "要使用Chroma,请定义: rag_chain = create_retrieval_chain(retriever, question_answer_chain).",
    "grade": 0,
    "grader": "文档相似性回顾",
    "feedback": "检索到的文档一般讨论了向量存储,但没有专门讨论Chroma",
}]

系统执行

app = entry_builder.compile()
result = app.invoke({"raw_logs": raw_logs}, debug=False)
print(result)

可视化

系统还支持生成流程图,便于理解和调试:

graph_png = app.get_graph(xray=1).draw_mermaid_png()
with open("子图可控性.png", "wb") as f:
    f.write(graph_png)

设计优势

1. 模块化设计

每个子图都有独立的状态和功能,便于维护和扩展。

2. 并行处理

故障分析和问题总结可以并行执行,提高系统效率。

3. 状态管理

通过Annotatedadd操作符实现智能的状态合并机制。

4. 可扩展性

可以轻松添加新的子图或修改现有流程,不影响其他模块。

实际应用建议

1. 集成LLM

在实际部署时,应该将示例中的固定字符串替换为真实的LLM调用,实现智能分析。

2. 错误处理

添加异常处理机制,确保系统在遇到错误时能够优雅处理。

3. 监控和日志

增加系统运行监控和详细的执行日志,便于问题排查。

4. 性能优化

对于大量日志的处理,可以考虑批处理和异步执行。

总结

本文介绍的基于LangGraph的日志分析系统展示了如何通过子图组合实现复杂的业务逻辑。系统具有良好的模块化设计、并行处理能力和可扩展性,为构建AI驱动的智能运维系统提供了有效的解决方案。通过合理的状态管理和流程控制,可以轻松应对各种复杂的日志分析需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值