Spark SQL合并小文件的一种方法

小文件问题原因:

spark.sql.shuffle.partitions=200
spark sql默认shuffle分区是200个,如果数据量比较小时,写hdfs时会产生200个小文件。可通过如下调整,使其自适应的合并小文件(本人测试环境从原来的200个小文件合并成一个文件)


控制输出文件的个数 DataFrame输出结果保存为文件时,尤其是根据某个条件分区时,可以控制输出文件的个数,从而减少小文件的个数

DataFrame..coalesce(1).write.format("parquet").mode(SaveMode.Overwrite).partitionBy("分区条件列名").save("路径")


下边方法作用不大

解决方法:

spark-sql> set spark.sql.adaptive.enabled=true;

启用 Adaptive Execution ,从而启用自动设置 Shuffle Reducer 特性

spark-sql> set spark.sql.adaptive.shuffle.targetPostShuffleInputSize=128000000;

设置每个 Reducer 读取的目标数据量,其单位是字节。默认64M,一般改成集群块大小

参考

sparksession.sqlContext.setConf("hive.merge.mapfiles","true")
sparksession.sqlContext.setConf("mapred.max.split.size","256000000")
sparksession.sqlContext.setConf("mapred.min.split.size.per.node","192000000")
sparksession.sqlContext.setConf("mapred.min.split.size.per.rack","192000000")
sparksession.sqlContext.setConf("hive.input.format","org.apache.hadoop.hive.ql.io.CombineHiveInputFormat")
<think>好的,用户的问题是关于在使用Spark SQL时如何导出带有表头的CSV文件。我需要先回忆一下相关的Spark知识,特别是DataFrame的写入操作。根据引用中的信息,引用[1]提到了使用df.coalesce(1).write.format(...).option("header", "true").save(...),这里的关键是option("header", "true"),这说明设置header为true可以导出表头。 然后,我需要确认其他引用是否提供了更多相关信息。引用[3]和引用[4]提到了使用spark.read.format(...).option(...).load(...),但这里用户需要的是写入操作,所以重点应该是在.write部分。引用[1]的示例代码已经明确展示了如何设置header选项,同时还有mode("overwrite")等参数。 接下来,我需要考虑用户可能的疑问,比如是否需要调整分区数,因为使用coalesce(1)可以将数据合并到一个文件中,避免多个分区生成多个文件。但用户的问题主要集中在表头上,所以需要明确说明.option("header", "true")的作用。 另外,用户可能在使用spark-sql命令行工具,如引用[2]中的spark-sql --master local[2],这时候导出数据可能需要使用INSERT OVERWRITE DIRECTORY语句,并设置相关属性,比如'header'='true'。这部分需要补充说明,因为不同的使用场景(编程API vs SQL命令行)可能有不同的方法。 最后,总结步骤,确保用户能够理解在代码中如何设置选项,以及在SQL命令行中如何处理。同时,提醒用户注意导出路径的权限和文件数量的问题,比如coalesce或repartition的使用,确保生成的文件符合预期。</think>在使用Spark SQL导出CSV文件时,可通过`.option("header", "true")`参数添加表头,具体实现分为编程API和SQL命令行两种方式: ### 1. 编程API实现(Scala/Python) ```python # 通过DataFrame API导出含表头的CSV df.write \ .format("csv") \ .option("header", "true") \ # 启用表头 .option("sep", ",") \ # 设置分隔符 .mode("overwrite") \ # 覆盖模式写入 .save("/output/path") ``` ### 2. Spark-SQL命令行实现 ```sql -- 设置表头输出参数 SET spark.sql.csv.header=true; -- 导出数据到CSV文件 INSERT OVERWRITE DIRECTORY '/output/path' USING csv OPTIONS (header 'true') SELECT * FROM test_sdb; ``` ### 关键参数说明 1. `header`:设置为`true`时生成包含列名的首行[^1] 2. `mode`:指定写入模式(overwrite/append/ignore)[^3] 3. `sep`:自定义字段分隔符(默认逗号) 4. `coalesce`:合并输出文件(如`.coalesce(1)`生成单个文件) ### 文件输出说明 - 默认按分区生成多个文件,建议通过`coalesce()`或`repartition()`控制文件数量 - 输出路径需为空目录或使用覆盖模式[^4] - 本地路径需添加`file://`前缀,HDFS路径直接使用hdfs://格式
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大怀特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值