华为od机试C卷【伐木工】

这篇博客讨论了华为在线开发者(OD)机试中的一道题目——伐木工如何切割树木以获得最大收益。通过动态规划和数学方法,解释了如何寻找最少切割次数实现收益最大化。博主给出了整数拆分的思路,并强调了在正整数中,2和3是最小的两个正整数,它们在组合中起到关键作用。提供了代码示例来辅助理解问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

题目

题解一

动态规划

题解二

数学方法


题目

一根X米长的树木,伐木工切割成不同长度的木材后进行交易,交易价格为每根木头长度的乘积。规定切割后的每根木头长度都为正整数,也可以不切割,直接拿整根树木进行交易。请问伐木工如何尽量少的切割,才能使收益最大化?

输入描述: 木材的长度(X<=50)

输出描述: 输出最优收益时的各个树木长度,以空格分割,按升序排列

示例1

输入:

10

输出:

3 3 4

说明:

1.一根2米长的树木,伐木工不切割,为2* 1,收益最大为2

2.一根4米长的树木,伐木工不需要切割为2 *2,省去切割成本,直接整根树木交易,为4*1,收益最大为4

3.一根5米长的树木,伐木工切割为2*3,收益最大为 6

4.一根10米长的树木,伐木工可以切割为方式: 3,4,3,也可以切割为方式二: 3,2,2,3,但方式二伐木工多切割了一次增加切割成本却卖了一样的

此并不是最优收益。

题解一

动态规划

1.原题是 [b站点-整数拆分](https://www.bilibili.com/video/BV1Mg411q7YJ/?spm_id_from=333.788&vd_source=77aa87f1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值