
消息队列
文章平均质量分 86
shangjg3
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Kafka Topic中的数据在消费后还存在吗
进入 Kafka 数据目录(默认 /var/lib/kafka/data),查看分区对应的日志文件(以 .log 结尾),文件内容即为未过期的消息。消费者可以通过调整偏移量重新消费历史数据(如故障恢复后重新处理消息),这是 Kafka 流处理(如 Kafka Streams)的基础。自定义消费者逻辑,消费后通过 Kafka 的管理接口(如 AdminClient)删除指定分区的消息(复杂度高,不建议使用)。消费者B(属于另一个消费组)可以再次从分区中读取偏移量100的消息(只要数据未过期)。原创 2025-06-10 10:11:41 · 259 阅读 · 0 评论 -
Kafka 同一分区(Partition)在同一时刻,多个消费者是否可以设置不同的 Offset
表示消费者在分区中的消费位置,每个消费者组独立维护自己的 Offset(存储在 __consumer_offsets 主题中)。:Kafka 中数据按主题(Topic)分类,每个主题包含多个分区(Partition),分区是数据存储和消费的最小单元。,多个独立消费者消费同一分区时会导致重复拉取数据(每个消费者都会从自己的 Offset 开始消费),可能引发性能问题。2. 组内消费者共享该分区的 Offset(由消费者组统一管理),Offset 的更新会影响整个组的消费进度。原创 2025-06-11 05:30:00 · 857 阅读 · 0 评论 -
Kafka 如何保证顺序消费
摘要:本文探讨了Kafka如何保证消息顺序消费的核心机制。Kafka通过分区特性实现消息有序性,同一分区内的消息天然有序。生产者端可通过自定义分区器或固定分区策略将关联消息发送至同一分区,消费者端则需确保每个分区仅由一个消费者线程处理。典型应用场景包括金融交易、数据库变更日志及电商库存管理等需严格顺序处理的业务。文章详细分析了实现顺序消费的技术方案,并强调了在保证顺序性的同时需兼顾系统性能的平衡。原创 2025-05-31 12:00:46 · 1052 阅读 · 0 评论 -
Kafka ACK机制与数据可靠性
本文深入解析Kafka的ACK机制,介绍了三种确认模式(0/1/all)及其适用场景。acks=0实现最高吞吐量但可靠性最低,acks=1提供中间平衡,acks=all确保最高数据可靠性但性能较低。重点阐述了ACK机制与ISR副本的协同工作原理,包括min.insync.replicas配置和动态ISR调整策略。通过生产者配置示例和性能指标对比,展示了如何在可靠性与吞吐量之间取得平衡,并针对消息丢失、吞吐量下降等问题提供了解决方案建议。文章为开发者配置Kafka消息确认策略提供了实用指导。原创 2025-05-31 11:52:33 · 1408 阅读 · 0 评论 -
Kafka 的 ISR 机制与数据可靠性
摘要: Kafka的ISR(同步副本)机制是其实现高可用性和数据可靠性的核心技术。ISR动态维护与领导者副本同步的追随者副本列表,确保消息安全存储并参与故障容错。领导者副本处理读写请求,追随者副本同步数据;当acks=all时,需所有ISR副本确认消息才视为提交,保障数据一致性。若领导者故障,仅ISR内的副本可被选举为新领导者,避免数据丢失。该机制通过平衡可靠性与性能(如acks参数配置),适用于金融等高可靠场景或日志等高性能场景,是Kafka分布式消息系统的核心设计。原创 2025-05-31 11:36:56 · 1216 阅读 · 0 评论 -
Kafka 如何保证不重复消费
Kafka避免消息重复消费的关键策略:生产者端开启幂等性(单分区)或事务机制(跨分区)防止重复发送;消费者端采用手动提交偏移量确保消息处理完成后再提交;业务层可添加唯一标识或数据库去重逻辑作为最后保障。这三种机制协同配合,从不同层面确保消息处理的精准性,适用于不同业务场景需求,是构建可靠消息系统的核心方案。原创 2025-05-31 11:24:11 · 1312 阅读 · 0 评论 -
Kafka数据怎么保障不丢失
Kafka数据可靠性保障策略摘要:Apache Kafka通过多层次机制确保分布式消息系统中数据不丢失。生产者端采用acks参数(0/1/all)、重试机制和幂等性/事务控制消息发送可靠性;Broker端通过副本机制、ISR列表和日志持久化策略实现数据容错;消费者端利用偏移量管理和再均衡处理确保消息准确消费。此外,跨数据中心复制和监控告警提供高级保障。实际应用中需根据业务场景(如金融级强一致或高吞吐弱一致)在可靠性与性能间取得平衡。通过参数调优和多环节配合,Kafka构建了完整的数据可靠性保障链路。原创 2025-05-31 11:08:30 · 1236 阅读 · 0 评论 -
Kafka安装教程
到指定目录,复制conf目录下zoo_sample.cfg到zoo.cfg,并修改配置。进入到config目录,修改server.properties配置。advertised.listeners才是真正的对外代理地址。isteners的作用不是对外提供服务代理,而是监听!进入bin目录,启动zookeeper。1.安装zookeeper。1.安装zookeeper。原创 2023-09-22 15:06:55 · 693 阅读 · 0 评论 -
Kafka的分区副本机制
这是针对当首领副本挂掉且 ISR 中没有其他可用副本时,是否允许某个不完全同步的副本成为首领副本,这可能会导致数据丢失或者数据不一致,在某些对数据一致性要求较高的场景 (如金融领域),这可能无法容忍的,所以其默认值为 false,如果你能够允许部分数据不一致的话,可以配置为 true。在所有副本中,只有领导副本才能进行消息的读写处理。如果按照默认值保留数据一周,而且每天使用一个新片段,那么你就会看到,在每天使用一个新片段的同时会删除一个最老的片段,所以大部分时间该分区会有 7 个片段存在。原创 2023-10-12 16:29:33 · 939 阅读 · 0 评论 -
Kafka生产者使用案例
如果没有指定分区 ,那么分区器会根据 ProducerRecord 对象的键来选择一个分区,紧接着,这条记录被添加到一个记录批次里,这个批次里的所有消息会被发送到相同的主题和分区上。如果写入失败,则会返回一个错误。例如,假设这个值为 1000K ,那么可以发送的单个最大消息为 1000K ,或者生产者可以在单个请求里发送一个批次,该批次包含了 1000 个消息,每个消息大小为 1K。它的值越高,就会占用越多的内存,不过也会提升吞吐量,把它设置为 1 可以保证消息是按照发送的顺序写入服务器,即使发生了重试。原创 2023-10-12 17:19:26 · 739 阅读 · 0 评论 -
Kafka消费者使用案例
注:虽然程序不能在失败时候进行自动重试,但是我们是可以手动进行重试的,你可以通过一个 Map offsets 来维护你提交的每个分区的偏移量,然后当失败时候,你可以判断失败的偏移量是否小于你维护的同主题同分区的最后提交的偏移量,如果小于则代表你已经提交了更大的偏移量请求,此时不需要重试,否则就可以进行手动重试。同时在主题发生变化时 , 比如添加了新的分区,也会发生分区与消费者的重新分配,分区的所有权从一个消费者转移到另一个消费者,这样的行为被称为再均衡。原创 2023-10-14 17:33:58 · 1895 阅读 · 0 评论 -
Kafka 集群安装与配置指南
本文详细介绍了生产级Kafka集群的安装与配置要点。首先从硬件规划、软件环境和节点准备等方面阐述安装前的准备工作;然后具体说明下载安装、配置文件修改和集群启动的操作步骤;进而提出通过副本机制、监控告警和数据备份来保障集群可用性;同时介绍了使用自动化工具提升部署效率的方法;最后重点讲解了SSL/TLS认证和ACL权限控制等安全性配置。全文系统性地指导了如何搭建一个高可用、可靠且安全的Kafka集群,为生产环境部署提供了实用参考方案。原创 2025-05-28 09:39:25 · 1025 阅读 · 0 评论 -
Kafka的Java API 基本操作
本文详细介绍了如何使用Apache Kafka原生Java API操作生产者和消费者。首先说明环境搭建和依赖引入步骤,然后分别讲解生产者实现(包括基础代码、可靠性、顺序性、幂等性和事务保证)以及消费者实现(包括基础消费和偏移量管理)。文章还提供了自定义分区器、拦截器和序列化器的实现示例,帮助开发者掌握Kafka的核心特性与高级功能。通过完整代码示例,展示了如何构建高效可靠的Kafka应用,满足不同场景下的消息处理需求。原创 2025-05-28 09:40:56 · 1151 阅读 · 0 评论 -
Kafka核心原理与机制详解
Kafka凭借高性能、可扩展和可靠的特性成为主流分布式消息系统。其核心架构基于分布式主题(Topic)和分区(Partition),通过分区分布实现负载均衡和水平扩展。副本机制包含领导者-追随者模型,采用ISR列表保证数据同步,确保高可用性。消息确认机制通过acks参数提供不同级别的可靠性保障,结合幂等性和事务机制防止消息重复。消费者偏移量管理记录消费位置,支持自动/手动提交,并提供精确一次处理语义。这些机制共同构成了Kafka高效可靠的消息处理能力,适用于各类实时数据场景。原创 2025-05-28 09:40:35 · 806 阅读 · 0 评论 -
Kafka 偏移提交、数据积压与分区再均衡的解决方法
Kafka消费者常见问题及解决方案摘要 Kafka消费者在实际应用中主要面临三个核心问题: 消费偏移提交问题:自动提交可能导致消息丢失,手动提交不当会引发重复消费。建议根据业务需求选择提交方式:关键业务推荐手动同步提交,普通场景可优化自动提交间隔,多线程环境下需使用线程安全机制管理偏移量。 数据积压问题:主要由消费者处理能力不足或分区分配不均导致。可通过优化消费逻辑、增加消费者实例、合理分配分区及引入熔断机制来解决。 分区再均衡问题:消费者组变动或心跳超时触发。应对措施包括减少不必要的消费者变动、谨慎调整分原创 2025-05-28 09:41:54 · 812 阅读 · 0 评论