教学全程覆盖:遥感红外小目标检测

1.背景意义

研究背景与意义

随着遥感技术的快速发展,遥感图像的应用领域日益广泛,涵盖了城市规划、环境监测、灾害评估等多个方面。在这些应用中,小目标的检测尤为重要,因为它们往往承载着关键信息,如建筑物、船只、树木等自然或人造物体。然而,传统的目标检测算法在处理小目标时常常面临挑战,主要表现为检测精度低、漏检率高等问题。因此,开发一种高效、准确的遥感红外小目标检测系统具有重要的理论价值和实际意义。

本研究旨在基于改进的YOLOv11模型,构建一个专门针对遥感红外图像中小目标的检测系统。该系统将利用一个包含1155张图像的数据集,该数据集涵盖了10个类别,包括建筑物、云层、地面、大型飞行物、中型飞行物、小型飞行物、山脉、船只、塔楼和树木。这些类别的多样性为模型的训练提供了丰富的样本,有助于提高模型的泛化能力和检测精度。

在数据集的预处理过程中,采用了多种增强技术,如随机亮度调整、随机曝光调整以及盐和胡椒噪声的引入,这些方法不仅丰富了训练数据的多样性,还提高了模型在不同环境下的鲁棒性。此外,数据集中的图像经过了自动方向调整和统一尺寸处理,确保了输入数据的一致性和规范性。

通过本研究的开展,不仅可以提升遥感红外小目标的检测能力,还能为相关领域的研究提供新的思路和方法。随着遥感技术的不断进步,基于深度学习的目标检测方法将在未来的应用中发挥越来越重要的作用,推动遥感图像分析的智能化和自动化进程。

2.视频效果

2.1 视频效果

3.图片效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

项目涉及的源码数据来源链接**

注意:本项目提供训练的数据集和训练教程,由于版本持续更新,暂不提供权重文件(best.pt),请按照6.训练教程进行训练后实现上图演示的效果。

4.数据集信息

4.1 本项目数据集类别数&类别名

nc: 10
names: [‘building’, ‘cloud’, ‘floor’, ‘fly_big’, ‘fly_medium’, ‘fly_small’, ‘mountain’, ‘ship’, ‘tower’, ‘tree’]

该项目为【目标检测】数据集,请在【训练教程和Web端加载模型教程(第三步)】这一步的时候按照【目标检测】部分的教程来训练

4.2 本项目数据集信息介绍

本项目数据集信息介绍

本项目所使用的数据集专注于遥感红外小目标检测,旨在通过改进YOLOv11模型来提升小目标的检测精度与效率。数据集的主题为“hnogwai”,涵盖了多种自然与人造物体的类别,适用于复杂环境下的目标识别任务。该数据集共包含10个类别,具体包括建筑物(building)、云层(cloud)、地面(floor)、大飞虫(fly_big)、中飞虫(fly_medium)、小飞虫(fly_small)、山脉(mountain)、船只(ship)、塔(tower)以及树木(tree)。这些类别的选择充分考虑了遥感图像中常见的物体特征,旨在为模型提供多样化的训练样本。

在数据集的构建过程中,特别注重了样本的多样性与代表性,以确保模型在不同场景下的泛化能力。每个类别的样本均经过精心标注,确保其在训练过程中能够有效地学习到各类目标的特征。这种细致的标注工作不仅提升了数据集的质量,也为后续的模型训练奠定了坚实的基础。

通过使用这一数据集,改进后的YOLOv11模型将能够更准确地识别和定位遥感图像中的小目标,尤其是在复杂背景和多目标共存的情况下。该数据集的设计理念和类别设置旨在推动遥感技术在实际应用中的发展,特别是在环境监测、城市规划和资源管理等领域的应用潜力。总之,本项目的数据集不仅是一个技术性强的训练工具,更是推动遥感小目标检测研究进展的重要组成部分。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 所需软件PyCharm和Anaconda安装教程(第一步)

5.2 安装Python虚拟环境创建和依赖库安装视频教程(第二步)

6.改进YOLOv11训练教程和Web_UI前端加载模型教程(零基础手把手教学)

6.1 改进YOLOv11训练教程和Web_UI前端加载模型教程(第三步)

按照上面的训练视频教程链接加载项目提供的数据集,运行train.py即可开始训练

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 1/200     20.8G   0.01576   0.01955  0.007536        22      1280: 100%|██████████| 849/849 [14:42<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00,  2.87it/s]
             all       3395      17314      0.994      0.957      0.0957      0.0843

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 2/200     20.8G   0.01578   0.01923  0.007006        22      1280: 100%|██████████| 849/849 [14:44<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00,  2.95it/s]
             all       3395      17314      0.996      0.956      0.0957      0.0845

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 3/200     20.8G   0.01561    0.0191  0.006895        27      1280: 100%|██████████| 849/849 [10:56<00:00,  1.29it/s]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|███████   | 187/213 [00:52<00:00,  4.04it/s]
             all       3395      17314      0.996      0.957      0.0957      0.0845
项目数据集下载链接

7.原始YOLOv11算法讲解

YOLOv11是Ultralytics推出的YOLO系列最新版本,专为实现尖端的物体检测而设计。其架构和训练方法上进行了重大改进,使之不仅具备卓越的准确性和处理速度,还在计算效率上实现了一场革命。得益于其改进的主干和颈部架构,YOLOv11在特征提取和处理复杂任务时表现更加出色。在2024年9月27日,Ultralytics通过长达九小时的在线直播发布这一新作,展示了其在计算机视觉领域的革新。

YOLOv11通过精细的架构设计和优化训练流程,在保持高精度的同时,缩减了参数量,与YOLOv8m相比减少了22%的参数,使其在COCO数据集上的平均准确度(mAP)有所提升。这种效率的提高使YOLOv11非常适合部署在各种硬件环境中,包括边缘设备、云计算平台以及支持NVIDIA GPU的系统,确保在灵活性上的优势。

该模型支持广泛的任务,从对象检测、实例分割到图像分类、姿态估计和定向对象检测(OBB),几乎覆盖了计算机视觉的所有主要挑战。其创新的C3k2和C2PSA模块提升了网络深度和注意力机制的应用,提高了特征提取的效率和效果。同时,YOLOv11的改进网络结构也使之在复杂视觉任务上得以从容应对,成为各类计算机视觉任务的多功能选择。这些特性令YOLOv11在实施实时物体检测的各个领域中表现出众。


2024年9月27日,Ultralytics在线直播长达九小时,为YOLO11召开“发布会”

YOLO11 是 Ultralytics YOLO 系列实时物体检测器的最新版本,它以尖端的准确性、速度和效率重新定义了可能性。在之前 YOLO
版本的显著进步的基础上,YOLO11 在架构和训练方法方面进行了重大改进,使其成为各种计算机视觉任务的多功能选择。

YOLO11主要特点:
  • 增强的特征提取:YOLO11 采用了改进的主干和颈部架构,增强了特征提取能力,可实现更精确的对象检测和复杂任务性能。
  • 针对效率和速度进行了优化:YOLO11 引入了完善的架构设计和优化的训练流程,可提供更快的处理速度,并在准确度和性能之间保持最佳平衡。
  • 更少的参数,更高的准确度:借助模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均准确度 (mAP),同时使用的参数比 YOLOv8m 少 22%,从而提高了计算效率,同时又不影响准确度。
  • 跨环境的适应性:YOLO11 可以无缝部署在各种环境中,包括边缘设备、云平台和支持 NVIDIA GPU 的系统,从而确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿势估计还是定向对象检测 (OBB),YOLO11 都旨在满足各种计算机视觉挑战。
支持的任务和模式

YOLO11 以 YOLOv8 中引入的多功能模型系列为基础,为各种计算机视觉任务提供增强的支持:

ModelFilenamesTaskInferenceValidationTrainingExport
YOLO11yolol11n.pt, yolol11s.pt, yolol11m.pt, yolol11x.ptDetection
YOLO11-segyolol11n-seg.pt, yolol11s-seg.pt, yolol11m-seg.pt,
yolol11x-seg.ptInstance Segmentation
YOLO11-poseyolol11n-pose.pt, yolol11s-pose.pt, yolol11m-pose.pt,
yolol11x-pose.ptPose/Keypoints
YOLO11-obbyolol11n-obb.pt, yolol11s-obb.pt, yolol11m-obb.pt,
yolol11x-obb.ptOriented Detection
YOLO11-clsyolol11n-cls.pt, yolol11s-cls.pt, yolol11m-cls.pt,
yolol11x-cls.ptClassification
简单的 YOLO11 训练和推理示例

以下示例适用于用于对象检测的 YOLO11 Detect 模型。

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")

# Train the model
train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()

# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model
支持部署于边缘设备

YOLO11 专为适应各种环境而设计,包括边缘设备。其优化的架构和高效的处理能力使其适合部署在边缘设备、云平台和支持 NVIDIA GPU
的系统上。这种灵活性确保 YOLO11 可用于各种应用,从移动设备上的实时检测到云环境中的复杂分割任务。有关部署选项的更多详细信息,请参阅导出文档。

YOLOv11 yaml文件
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

YOLO11和YOLOv8 yaml文件的区别

改进模块代码
  • C3k2

    class C3k2(C2f):
    “”“Faster Implementation of CSP Bottleneck with 2 convolutions.”“”

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )
    

C3k2,它是具有两个卷积的CSP(Partial Cross Stage)瓶颈架构的更快实现。

类继承:

  • C3k2继承自类C2f。这表明C2f很可能实现了经过修改的基本CSP结构,而C3k2进一步优化或修改了此结构。

构造函数(__init__):

  • c1:输入通道。

  • c2:输出通道。

  • n:瓶颈层数(默认为1)。

  • c3k:一个布尔标志,确定是否使用C3k块或常规Bottleneck块。

  • e:扩展比率,控制隐藏层的宽度(默认为0.5)。

  • g:分组卷积的组归一化参数或组数(默认值为 1)。

  • shortcut:一个布尔值,用于确定是否在网络中包含快捷方式连接(默认值为 True)。

初始化:

  • super().__init__(c1, c2, n, short-cut, g, e) 调用父类 C2f 的构造函数,初始化标准 CSP 组件,如通道数、快捷方式、组等。

模块列表(self.m):

  • nn.ModuleList 存储 C3kBottleneck 模块,具体取决于 c3k 的值。

  • 如果 c3kTrue,它会初始化 C3k 模块。C3k 模块接收以下参数:

  • self.c:通道数(源自 C2f)。

  • 2:这表示在 C3k 块内使用了两个卷积层。

  • shortcutg:从 C3k2 构造函数传递。

  • 如果 c3kFalse,则初始化标准 Bottleneck 模块。

for _ in range(n) 表示将创建 n 个这样的块。

总结:

  • C3k2 实现了 CSP 瓶颈架构,可以选择使用自定义 C3k 块(具有两个卷积)或标准 Bottleneck 块,具体取决于 c3k 标志。

  • C2PSA

    class C2PSA(nn.Module):
    “”"
    C2PSA module with attention mechanism for enhanced feature extraction and processing.

    This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
    capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
    
    Attributes:
        c (int): Number of hidden channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
    
    Methods:
        forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
    
    Notes:
        This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
    
    Examples:
        >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
        >>> input_tensor = torch.randn(1, 256, 64, 64)
        >>> output_tensor = c2psa(input_tensor)
    """
    
    def __init__(self, c1, c2, n=1, e=0.5):
        """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)
    
        self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
    
    def forward(self, x):
        """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = self.m(b)
        return self.cv2(torch.cat((a, b), 1))
    

C2PSA 模块是一个自定义神经网络层,带有注意力机制,用于增强特征提取和处理。

类概述

  • 目的:

  • C2PSA 模块引入了一个卷积块,利用注意力机制来改进特征提取和处理。

  • 它使用一系列 PSABlock 模块,这些模块可能代表某种形式的位置自注意力 (PSA),并且该架构旨在允许堆叠多个 PSABlock 层。

构造函数(__init__):

  • 参数:

  • c1:输入通道(必须等于 c2)。

  • c2:输出通道(必须等于 c1)。

  • n:要堆叠的 PSABlock 模块数量(默认值为 1)。

  • e:扩展比率,用于计算隐藏通道的数量(默认值为 0.5)。

  • 属性:

  • self.c:隐藏通道数,计算为 int(c1 * e)

  • self.cv1:一个 1x1 卷积,将输入通道数从 c1 减少到 2 * self.c。这为将输入分成两部分做好准备。

  • self.cv2:另一个 1x1 卷积,处理后将通道维度恢复回 c1

  • self.m:一系列 PSABlock 模块。每个 PSABlock 接收 self.c 通道,注意头的数量为 self.c // 64。每个块应用注意和前馈操作。

前向方法:

  • 输入:

  • x,输入张量。

  • 操作:

  1. self.cv1(x) 应用 1x1 卷积,将输入通道大小从 c1 减小到 2 * self.c

  2. 生成的张量沿通道维度分为两部分,ab

  • a:第一个 self.c 通道。

  • b:剩余的 self.c 通道。

  1. b 通过顺序容器 self.m,它是 PSABlock 模块的堆栈。这部分经过基于注意的处理。

  2. 处理后的张量 ba 连接。

  3. self.cv2 应用 1x1 卷积,将通道大小恢复为 c1

  • 输出:

  • 应用注意和卷积操作后的变换后的张量。

总结:

  • C2PSA 是一个增强型卷积模块,它通过堆叠的 PSABlock 模块应用位置自注意力。它拆分输入张量,将注意力应用于其中一部分,然后重新组合并通过最终卷积对其进行处理。此结构有助于从输入数据中提取复杂特征。
网络结构

8.200+种全套改进YOLOV11创新点原理讲解

8.1 200+种全套改进YOLOV11创新点原理讲解大全

由于篇幅限制,每个创新点的具体原理讲解就不全部展开,具体见下列网址中的改进模块对应项目的技术原理博客网址【Blog】(创新点均为模块化搭建,原理适配YOLOv5~YOLOv11等各种版本)

改进模块技术原理博客【Blog】网址链接

9.png

8.2 精选部分改进YOLOV11创新点原理讲解
这里节选部分改进创新点展开原理讲解(完整的改进原理见上图和改进模块技术原理博客链接【如果此小节的图加载失败可以通过CSDN或者Github搜索该博客的标题访问原始博客,原始博客图片显示正常】

借鉴了其他算法的这些设计思想

借鉴了VGG的思想,使用了较多的3×3卷积,在每一次池化操作后,将通道数翻倍;

借鉴了network in network的思想,使用全局平均池化(global average pooling)做预测,并把1×1的卷积核置于3×3的卷积核之间,用来压缩特征;(我没找到这一步体现在哪里)

使用了批归一化层稳定模型训练,加速收敛,并且起到正则化作用。

以上三点为Darknet19借鉴其他模型的点。Darknet53当然是在继承了Darknet19的这些优点的基础上再新增了下面这些优点的。因此列在了这里

借鉴了ResNet的思想,在网络中大量使用了残差连接,因此网络结构可以设计的很深,并且缓解了训练中梯度消失的问题,使得模型更容易收敛。

使用步长为2的卷积层代替池化层实现降采样。(这一点在经典的Darknet-53上是很明显的,output的长和宽从256降到128,再降低到64,一路降低到8,应该是通过步长为2的卷积层实现的;在YOLOv11的卷积层中也有体现,比如图中我标出的这些位置)

特征融合

模型架构图如下

Darknet-53的特点可以这样概括:(Conv卷积模块+Residual Block残差块)串行叠加4次

Conv卷积层+Residual Block残差网络就被称为一个stage

在这里插入图片描述

上面红色指出的那个,原始的Darknet-53里面有一层 卷积,在YOLOv11里面,把一层卷积移除了

为什么移除呢?

    原始Darknet-53模型中间加的这个卷积层做了什么?滤波器(卷积核)的个数从 上一个卷积层的512个,先增加到1024个卷积核,然后下一层卷积的卷积核的个数又降低到512个

    移除掉这一层以后,少了1024个卷积核,就可以少做1024次卷积运算,同时也少了1024个3×3的卷积核的参数,也就是少了9×1024个参数需要拟合。这样可以大大减少了模型的参数,(相当于做了轻量化吧)

    移除掉这个卷积层,可能是因为作者发现移除掉这个卷积层以后,模型的score有所提升,所以才移除掉的。为什么移除掉以后,分数有所提高呢?可能是因为多了这些参数就容易,参数过多导致模型在训练集删过拟合,但是在测试集上表现很差,最终模型的分数比较低。你移除掉这个卷积层以后,参数减少了,过拟合现象不那么严重了,泛化能力增强了。当然这个是,拿着你做实验的结论,反过来再找补,再去强行解释这种现象的合理性。

过拟合
在这里插入图片描述

通过MMdetection官方绘制册这个图我们可以看到,进来的这张图片经过一个“Feature Pyramid Network(简称FPN)”,然后最后的P3、P4、P5传递给下一层的Neck和Head去做识别任务。 PAN(Path Aggregation Network)

在这里插入图片描述

“FPN是自顶向下,将高层的强语义特征传递下来。PAN就是在FPN的后面添加一个自底向上的金字塔,对FPN补充,将低层的强定位特征传递上去,

FPN是自顶(小尺寸,卷积次数多得到的结果,语义信息丰富)向下(大尺寸,卷积次数少得到的结果),将高层的强语义特征传递下来,对整个金字塔进行增强,不过只增强了语义信息,对定位信息没有传递。PAN就是针对这一点,在FPN的后面添加一个自底(卷积次数少,大尺寸)向上(卷积次数多,小尺寸,语义信息丰富)的金字塔,对FPN补充,将低层的强定位特征传递上去,又被称之为“双塔战术”。

FPN层自顶向下传达强语义特征,而特征金字塔则自底向上传达强定位特征,两两联手,从不同的主干层对不同的检测层进行参数聚合,这样的操作确实很皮。

自底向上增强

而 PAN(Path Aggregation Network)是对 FPN 的一种改进,它的设计理念是在 FPN 后面添加一个自底向上的金字塔。PAN 引入了路径聚合的方式,通过将浅层特征图(低分辨率但语义信息较弱)和深层特征图(高分辨率但语义信息丰富)进行聚合,并沿着特定的路径传递特征信息,将低层的强定位特征传递上去。这样的操作能够进一步增强多尺度特征的表达能力,使得 PAN 在目标检测任务中表现更加优秀。

可重参化EfficientRepBiPAN优化Neck

Repvgg-style

Repvgg-style的卷积层包含
卷积+ReLU结构,该结构能够有效地利用硬件资源。

在训练时,Repvgg-style的卷积层包含
卷积、
卷积、identity。(下图左图)
在这里插入图片描述

在推理时,通过重参数化(re-parameterization),上述的多分支结构可以转换为单分支的
卷积。(下图右图)

基于上述思想,作者设计了对GPU硬件友好的EfficientRep Backbone和Rep-PAN Neck,将它们用于YOLOv6中。

EfficientRep Backbone的结构图:
在这里插入图片描述

Rep-PAN Neck结构图:
在这里插入图片描述

Multi-path

只使用repvgg-style不能达到很好的精度-速度平衡,对于大模型,作者探索了多路径的网络结构。

参考该博客提出了Bep unit,其结构如下图所示:
在这里插入图片描述

CSP(Cross Stage Partial)-style计算量小,且有丰富的梯度融合信息,广泛应用于YOLO系列中,比如YOLOv11、PPYOLOE。

作者将Bep unit与CSP-style结合,设计了一种新的网络结构BepC3,如下图所示:
在这里插入图片描述

基于BepC3模块,作者设计了新的CSPBep Backbone和CSPRepPAN Neck,以达到很好的精度-速度平衡。

其他YOLO系列在使用CSP-stype结构时,partial ratio设置为1/2。为了达到更好的性能,在YOLOv6m中partial ratio的值为2/3,在YOLOv6l中partial ratio的值为1/2。

对于YOLOv6m,单纯使用Rep-style结构和使用BepC3结构的对比如下图所示:

BIFPN

BiFPN 全称 Bidirectional Feature Pyramid Network 加权双向(自顶向下 + 自低向上)特征金字塔网络。

相比较于PANet,BiFPN在设计上的改变:

总结下图:
图d 蓝色部分为自顶向下的通路,传递的是高层特征的语义信息;红色部分是自底向上的通路,传递的是低层特征的位置信息;紫色部分是上述第二点提到的同一层在输入节点和输入节点间新加的一条边。

在这里插入图片描述

我们删除那些只有一条输入边的节点。这么做的思路很简单:如果一个节点只有一条输入边而没有特征融合,那么它对旨在融合不同特征的特征网络的贡献就会很小。删除它对我们的网络影响不大,同时简化了双向网络;如上图d 的 P7右边第一个节点

如果原始输入节点和输出节点处于同一层,我们会在原始输入节点和输出节点之间添加一条额外的边。思路:以在不增加太多成本的情况下融合更多的特性;

与只有一个自顶向下和一个自底向上路径的PANet不同,我们处理每个双向路径(自顶向下和自底而上)路径作为一个特征网络层,并重复同一层多次,以实现更高层次的特征融合。如下图EfficientNet 的网络结构所示,我们对BiFPN是重复使用多次的。而这个使用次数也不是我们认为设定的,而是作为参数一起加入网络的设计当中,使用NAS技术算出来的。

Weighted Feature Fusion 带权特征融合:学习不同输入特征的重要性,对不同输入特征有区分的融合。
设计思路:传统的特征融合往往只是简单的 feature map 叠加/相加 (sum them up),比如使用concat或者shortcut连接,而不对同时加进来的 feature map 进行区分。然而,不同的输入 feature map 具有不同的分辨率,它们对融合输入 feature map 的贡献也是不同的,因此简单的对他们进行相加或叠加处理并不是最佳的操作。所以这里我们提出了一种简单而高效的加权特融合的机制。
常见的带权特征融合有三种方法,分别是:

在这里插入图片描述


这种方法比较简单,直接加一个可学习的权重。但是由于这个权重不受限制,所有可能引起训练的不稳定,所有并不推荐。
Softmax-based fusion: O = ∑ i e w i ∗ I i ϵ + ∑ j e w j O = \sum_{i} \frac{e^{w_i} * I_i}{ \epsilon+\sum_{j}e^{w_j}}O=∑

在这里插入图片描述


使用这种方法可以将范围放缩到 [ 0 , 1 ] [0, 1][0,1] 之间,训练稳定,但是训练很慢,所有也不推荐。
Fast normalized fusion: O = ∑ i w i ∗ I i ϵ + ∑ j w j O = \sum_{i} \frac{w_i * I_i}{ \epsilon+\sum_{j}w_j}O=∑

9.系统功能展示

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10. YOLOv11核心改进源码讲解

10.1 rmt.py

以下是对代码的核心部分进行提炼和详细注释的结果:

import torch
import torch.nn as nn
import torch.nn.functional as F

class DWConv2d(nn.Module):
    """ 深度可分离卷积类 """
    
    def __init__(self, dim, kernel_size, stride, padding):
        super().__init__()
        # 创建深度可分离卷积层
        self.conv = nn.Conv2d(dim, dim, kernel_size, stride, padding, groups=dim)

    def forward(self, x: torch.Tensor):
        '''
        x: 输入张量,形状为 (b, h, w, c)
        '''
        x = x.permute(0, 3, 1, 2)  # 转换为 (b, c, h, w)
        x = self.conv(x)  # 进行卷积操作
        x = x.permute(0, 2, 3, 1)  # 转换回 (b, h, w, c)
        return x

class MaSA(nn.Module):
    """ 多头自注意力机制类 """
    
    def __init__(self, embed_dim, num_heads, value_factor=1):
        super().__init__()
        self.factor = value_factor
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.head_dim = self.embed_dim * self.factor // num_heads
        self.key_dim = self.embed_dim // num_heads
        self.scaling = self.key_dim ** -0.5
        
        # 定义线性变换层
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
        self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True)
        self.v_proj = nn.Linear(embed_dim, embed_dim * self.factor, bias=True)
        self.out_proj = nn.Linear(embed_dim * self.factor, embed_dim, bias=True)

    def forward(self, x: torch.Tensor, rel_pos):
        '''
        x: 输入张量,形状为 (b, h, w, c)
        rel_pos: 位置关系的掩码
        '''
        bsz, h, w, _ = x.size()
        q = self.q_proj(x)  # 计算查询
        k = self.k_proj(x)  # 计算键
        v = self.v_proj(x)  # 计算值

        # 进行缩放
        k *= self.scaling
        
        # 计算注意力矩阵
        qk_mat = q @ k.transpose(-1, -2) + rel_pos  # 添加相对位置
        qk_mat = torch.softmax(qk_mat, -1)  # 归一化
        
        # 计算输出
        output = torch.matmul(qk_mat, v)  # 进行加权求和
        output = self.out_proj(output)  # 线性变换
        return output

class FeedForwardNetwork(nn.Module):
    """ 前馈神经网络类 """
    
    def __init__(self, embed_dim, ffn_dim, activation_fn=F.gelu, dropout=0.0):
        super().__init__()
        self.fc1 = nn.Linear(embed_dim, ffn_dim)  # 第一层线性变换
        self.fc2 = nn.Linear(ffn_dim, embed_dim)  # 第二层线性变换
        self.dropout = nn.Dropout(dropout)  # dropout层
        self.activation_fn = activation_fn  # 激活函数

    def forward(self, x: torch.Tensor):
        '''
        x: 输入张量,形状为 (b, h, w, c)
        '''
        x = self.fc1(x)  # 第一层线性变换
        x = self.activation_fn(x)  # 激活
        x = self.dropout(x)  # dropout
        x = self.fc2(x)  # 第二层线性变换
        return x

class VisRetNet(nn.Module):
    """ 视觉回归网络类 """
    
    def __init__(self, in_chans=3, num_classes=1000, embed_dims=[96, 192, 384, 768], depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24]):
        super().__init__()
        self.patch_embed = PatchEmbed(in_chans=in_chans, embed_dim=embed_dims[0])  # 图像分块嵌入层
        self.layers = nn.ModuleList()  # 存储各层的列表
        
        # 构建网络层
        for i_layer in range(len(depths)):
            layer = BasicLayer(embed_dim=embed_dims[i_layer], depth=depths[i_layer], num_heads=num_heads[i_layer])
            self.layers.append(layer)

    def forward(self, x):
        '''
        x: 输入张量,形状为 (b, c, h, w)
        '''
        x = self.patch_embed(x)  # 进行图像分块嵌入
        for layer in self.layers:
            x = layer(x)  # 逐层前向传播
        return x

# 其他辅助类和函数省略...

if __name__ == '__main__':
    model = VisRetNet()  # 创建模型实例
    inputs = torch.randn((1, 3, 640, 640))  # 随机输入
    res = model(inputs)  # 前向传播
    for i in res:
        print(i.size())  # 输出每层的尺寸

代码核心部分说明:

  1. DWConv2d: 实现了深度可分离卷积,适用于处理特征图。
  2. MaSA: 实现了多头自注意力机制,计算查询、键、值并进行注意力加权。
  3. FeedForwardNetwork: 实现了前馈神经网络,包含两层线性变换和激活函数。
  4. VisRetNet: 主网络结构,负责图像的分块嵌入和逐层处理。

代码结构:

  • 代码由多个模块组成,每个模块实现特定的功能,整体上形成一个完整的视觉回归网络。

这个文件定义了一个名为 rmt.py 的深度学习模型,主要是基于视觉变换器(Vision Transformer)架构的一个变体,称为 VisRetNet。这个模型使用了多种技术,包括注意力机制、残差连接、层归一化等,旨在处理图像分类等任务。

首先,文件导入了必要的库,包括 PyTorch 和一些辅助模块。接着,定义了一些基础组件,如 DWConv2d(深度可分离卷积)、RelPos2d(二维相对位置编码)、MaSAdMaSA(多头自注意力机制的变体)等。这些组件是构建更复杂模型的基础。

DWConv2d 类实现了深度可分离卷积,主要用于减少模型的参数量和计算量。RelPos2d 类用于生成二维的相对位置编码,这在自注意力机制中是非常重要的,因为它可以帮助模型理解不同位置之间的关系。MaSAdMaSA 类则实现了不同形式的多头自注意力机制,前者支持分块处理,而后者则是整体处理。

接下来,定义了 FeedForwardNetwork 类,这是一个前馈神经网络,通常用于变换器的每个层中,包含两个线性层和一个激活函数。RetBlock 类则是一个包含注意力机制和前馈网络的残差块,允许模型在训练过程中学习到更深层次的特征。

PatchMerging 类用于将输入特征图的尺寸减半,同时增加通道数,这在变换器的不同层之间进行下采样时非常有用。BasicLayer 类则是一个基本的变换器层,包含多个残差块和可选的下采样层。

LayerNorm2dPatchEmbed 类分别实现了二维层归一化和图像到补丁的嵌入,将输入图像转换为适合变换器处理的格式。

最后,VisRetNet 类是整个模型的核心,负责将所有的组件组合在一起。它定义了模型的结构,包括嵌入层、多个变换器层以及最终的分类头。模型的构造参数如嵌入维度、层数、头数等都可以灵活配置。

在文件的最后,定义了几个函数(RMT_TRMT_SRMT_BRMT_L),用于创建不同规模的模型。这些函数返回一个 VisRetNet 实例,并设置不同的超参数。

__main__ 部分,代码示例展示了如何实例化一个小型模型并进行一次前向传播,输入为一个随机生成的张量。最后,打印出每个输出特征图的尺寸。

总体而言,这个文件实现了一个复杂的视觉变换器模型,结合了多种现代深度学习技术,适用于图像处理任务。

10.2 mamba_vss.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import repeat
from functools import partial

class SS2D(nn.Module):
    def __init__(self, d_model, d_state=16, d_conv=3, expand=2, dropout=0., bias=False, device=None, dtype=None):
        super().__init__()
        # 初始化模型参数
        self.d_model = d_model  # 输入特征维度
        self.d_state = d_state  # 状态维度
        self.d_conv = d_conv  # 卷积核大小
        self.expand = expand  # 扩展因子
        self.d_inner = int(self.expand * self.d_model)  # 内部特征维度

        # 输入线性变换
        self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias)

        # 卷积层
        self.conv2d = nn.Conv2d(
            in_channels=self.d_inner,
            out_channels=self.d_inner,
            groups=self.d_inner,
            bias=True,
            kernel_size=d_conv,
            padding=(d_conv - 1) // 2,
        )
        self.act = nn.SiLU()  # 激活函数

        # 状态投影
        self.x_proj_weight = nn.Parameter(torch.empty(4, self.d_inner, self.d_state * 2))  # 权重参数
        self.dt_projs_weight = nn.Parameter(torch.empty(4, self.d_inner, self.d_state))  # 时间投影权重
        self.dt_projs_bias = nn.Parameter(torch.empty(4, self.d_inner))  # 时间投影偏置

        # 初始化其他参数
        self.A_logs = self.A_log_init(self.d_state, self.d_inner)  # A的对数初始化
        self.Ds = self.D_init(self.d_inner)  # D参数初始化

        self.out_norm = nn.LayerNorm(self.d_inner)  # 输出归一化
        self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias)  # 输出线性变换
        self.dropout = nn.Dropout(dropout) if dropout > 0. else None  # dropout层

    def forward(self, x: torch.Tensor):
        # 前向传播
        B, H, W, C = x.shape  # 获取输入的维度
        xz = self.in_proj(x)  # 输入线性变换
        x, z = xz.chunk(2, dim=-1)  # 分割为x和z

        x = x.permute(0, 3, 1, 2).contiguous()  # 调整维度顺序
        x = self.act(self.conv2d(x))  # 卷积和激活
        y = self.forward_core(x)  # 核心前向传播
        y = y * F.silu(z)  # 结合z
        out = self.out_proj(y)  # 输出线性变换
        if self.dropout is not None:
            out = self.dropout(out)  # 应用dropout
        return out

    def forward_core(self, x: torch.Tensor):
        # 核心前向传播逻辑
        B, C, H, W = x.shape
        L = H * W  # 计算总的空间维度
        K = 4  # 复制的次数

        # 处理输入数据
        x_hwwh = torch.stack([x.view(B, -1, L), torch.transpose(x, dim0=2, dim1=3).contiguous().view(B, -1, L)], dim=1).view(B, 2, -1, L)
        xs = torch.cat([x_hwwh, torch.flip(x_hwwh, dims=[-1])], dim=1)  # 处理后的输入

        # 进行投影
        x_dbl = torch.einsum("b k d l, k c d -> b k c l", xs.view(B, K, -1, L), self.x_proj_weight)
        dts, Bs, Cs = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=2)  # 分割为不同的部分

        # 进行选择性扫描
        out_y = self.selective_scan(xs, dts, self.A_logs, Bs, Cs, self.Ds)
        y = out_y.view(B, H, W, -1)  # 调整输出维度
        y = self.out_norm(y)  # 归一化
        return y

class VSSBlock(nn.Module):
    def __init__(self, hidden_dim: int = 0, drop_path: float = 0.2):
        super().__init__()
        self.ln_1 = nn.LayerNorm(hidden_dim)  # 归一化层
        self.self_attention = SS2D(d_model=hidden_dim)  # 自注意力层
        self.drop_path = nn.Dropout(drop_path)  # DropPath层

    def forward(self, input: torch.Tensor):
        input = input.permute((0, 2, 3, 1))  # 调整输入维度
        x = input + self.drop_path(self.self_attention(self.ln_1(input)))  # 添加残差连接
        return x.permute((0, 3, 1, 2))  # 调整输出维度

# 下面的代码是模型的测试部分,可以在实际使用时去掉
if __name__ == '__main__':
    inputs = torch.randn((1, 64, 32, 32)).cuda()  # 创建输入张量
    model = VSSBlock(64).cuda()  # 创建模型
    pred = model(inputs)  # 前向传播
    print(pred.size())  # 输出预测的尺寸

代码核心部分说明:

  1. SS2D类:实现了一个自定义的神经网络模块,包含输入线性变换、卷积层、状态投影等。forward方法定义了前向传播过程。
  2. VSSBlock类:使用SS2D作为自注意力层,并添加了归一化和DropPath机制,增强了模型的表达能力。
  3. 前向传播:在forward方法中,输入经过线性变换、卷积、注意力机制处理后,输出最终结果。

以上是代码的核心部分及其详细注释,提供了对模型结构和前向传播过程的理解。

这个程序文件 mamba_vss.py 实现了一个基于深度学习的模块,主要包括两个类:SS2DVSSBlock,以及其子类 Mamba2Block。这些模块的设计主要用于处理图像数据,尤其是在计算机视觉任务中。

首先,SS2D 类是一个自定义的神经网络模块,继承自 nn.Module。它的构造函数接受多个参数,包括模型的维度、状态维度、卷积核大小、扩展因子等。该类的核心功能是通过线性变换和卷积操作来处理输入数据,并在此过程中应用了一些特殊的初始化方法。dt_initA_log_initD_init 等静态方法用于初始化不同的参数,以确保网络在训练开始时具有良好的性能。

forward_corev0 方法中,输入数据经过了一系列的张量操作,包括维度变换、线性变换和卷积,最终通过选择性扫描(selective_scan)进行处理。选择性扫描是一种特殊的操作,用于处理序列数据,能够有效捕捉时间序列中的依赖关系。最终的输出经过层归一化和线性变换,得到最终的结果。

接下来,VSSBlock 类同样继承自 nn.Module,它实现了一个包含自注意力机制的块。构造函数中定义了归一化层和自注意力层(SS2D 实例),并引入了 DropPath 技术以增强模型的鲁棒性。在 forward 方法中,输入数据经过归一化和自注意力层的处理后,结合原始输入通过残差连接进行输出。

Mamba2Block 类是 VSSBlock 的子类,重写了自注意力层,使用了 Mamba2Simple 作为其自注意力机制的实现。它的 forward 方法与 VSSBlock 类似,但在处理输入时进行了适当的维度调整。

最后,在 __main__ 部分,代码展示了如何使用这些模块。首先创建一个随机输入张量,然后实例化 VSSBlockMamba2Block,并对输入进行前向传播,打印输出的形状。这部分代码用于验证模型的构建和功能是否正常。

整体来看,这个程序文件实现了一个复杂的神经网络模块,结合了自注意力机制和卷积操作,适用于处理图像数据的任务。通过灵活的参数设置和模块化设计,用户可以根据需要调整模型的结构和功能。

10.3 fadc.py

以下是经过简化并添加详细中文注释的核心代码部分:

import torch
import torch.nn as nn
import torch.nn.functional as F

class OmniAttention(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, groups=1, reduction=0.0625, kernel_num=4, min_channel=16):
        super(OmniAttention, self).__init__()
        # 计算注意力通道数
        attention_channel = max(int(in_planes * reduction), min_channel)
        self.kernel_size = kernel_size
        self.kernel_num = kernel_num
        self.temperature = 1.0  # 温度参数,用于控制注意力的平滑程度

        # 定义网络层
        self.avgpool = nn.AdaptiveAvgPool2d(1)  # 自适应平均池化
        self.fc = nn.Conv2d(in_planes, attention_channel, 1, bias=False)  # 全连接层
        self.bn = nn.BatchNorm2d(attention_channel)  # 批归一化
        self.relu = nn.ReLU(inplace=True)  # ReLU激活函数

        # 定义通道、滤波器、空间和核的注意力机制
        self.channel_fc = nn.Conv2d(attention_channel, in_planes, 1, bias=True)
        self.func_channel = self.get_channel_attention

        if in_planes == groups and in_planes == out_planes:  # 深度可分离卷积
            self.func_filter = self.skip
        else:
            self.filter_fc = nn.Conv2d(attention_channel, out_planes, 1, bias=True)
            self.func_filter = self.get_filter_attention

        if kernel_size == 1:  # 点卷积
            self.func_spatial = self.skip
        else:
            self.spatial_fc = nn.Conv2d(attention_channel, kernel_size * kernel_size, 1, bias=True)
            self.func_spatial = self.get_spatial_attention

        if kernel_num == 1:
            self.func_kernel = self.skip
        else:
            self.kernel_fc = nn.Conv2d(attention_channel, kernel_num, 1, bias=True)
            self.func_kernel = self.get_kernel_attention

        self._initialize_weights()  # 初始化权重

    def _initialize_weights(self):
        # 权重初始化
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            if isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    @staticmethod
    def skip(_):
        return 1.0  # 跳过操作,返回1

    def get_channel_attention(self, x):
        # 计算通道注意力
        channel_attention = torch.sigmoid(self.channel_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)
        return channel_attention

    def get_filter_attention(self, x):
        # 计算滤波器注意力
        filter_attention = torch.sigmoid(self.filter_fc(x).view(x.size(0), -1, 1, 1) / self.temperature)
        return filter_attention

    def get_spatial_attention(self, x):
        # 计算空间注意力
        spatial_attention = self.spatial_fc(x).view(x.size(0), 1, 1, 1, self.kernel_size, self.kernel_size)
        spatial_attention = torch.sigmoid(spatial_attention / self.temperature)
        return spatial_attention

    def get_kernel_attention(self, x):
        # 计算核注意力
        kernel_attention = self.kernel_fc(x).view(x.size(0), -1, 1, 1, 1, 1)
        kernel_attention = F.softmax(kernel_attention / self.temperature, dim=1)
        return kernel_attention

    def forward(self, x):
        # 前向传播
        x = self.avgpool(x)  # 自适应平均池化
        x = self.fc(x)  # 全连接层
        x = self.bn(x)  # 批归一化
        x = self.relu(x)  # ReLU激活
        return self.func_channel(x), self.func_filter(x), self.func_spatial(x), self.func_kernel(x)  # 返回各个注意力机制的结果

代码说明:

  1. OmniAttention类:实现了一种多通道注意力机制,包含通道、滤波器、空间和核的注意力计算。
  2. 初始化方法:定义了注意力机制所需的网络层,并初始化权重。
  3. 前向传播:通过自适应平均池化、全连接层、批归一化和ReLU激活计算输入的注意力权重,并返回各个注意力机制的结果。

这个简化的代码保留了核心功能,同时通过注释解释了每个部分的作用。

这个程序文件 fadc.py 实现了一些用于深度学习的模块,主要集中在自适应膨胀卷积和频率选择的功能上。代码中使用了 PyTorch 库,定义了多个类和函数,以下是对其主要内容的说明。

首先,文件导入了必要的库,包括 PyTorch 和 NumPy。接着,定义了一个名为 OmniAttention 的类,该类实现了一种全局注意力机制。该类的构造函数接收多个参数,包括输入和输出通道数、卷积核大小、组数、缩减比例等。它通过自适应平均池化、全连接层、批归一化和 ReLU 激活函数来计算通道注意力、过滤器注意力、空间注意力和卷积核注意力。每种注意力机制的计算方法在类中都有对应的静态方法。

接下来,定义了一个 generate_laplacian_pyramid 函数,用于生成拉普拉斯金字塔。该函数通过逐层下采样输入张量,计算高频和低频部分,并将其存储在金字塔中。这个函数的设计允许在多层次上处理图像信息。

然后,定义了一个 FrequencySelection 类,该类用于在频域中选择特定的频率。它接收多个参数,包括输入通道数、频率列表、空间卷积参数等。该类通过不同的方式(如平均池化和拉普拉斯金字塔)来提取频率特征,并应用注意力机制来增强特定频率的响应。

接下来,定义了 AdaptiveDilatedConvAdaptiveDilatedDWConv 类,这两个类都继承自 ModulatedDeformConv2d。它们实现了自适应膨胀卷积的功能,允许在卷积操作中使用动态偏移和掩码。构造函数中设置了卷积的偏移、掩码以及其他相关参数,并在前向传播中应用这些卷积操作。

AdaptiveDilatedConv 中,卷积的偏移和掩码通过多个卷积层计算,结合了全局注意力机制和频率选择的功能。它支持多种卷积类型和频率选择策略,允许在不同的上下文中灵活使用。

最后,整个文件实现了复杂的卷积操作和注意力机制,旨在提高深度学习模型在图像处理任务中的表现。这些模块可以被用作更大模型的组成部分,尤其是在需要处理多尺度和多频率信息的应用中。

10.4 activation.py
import torch
import torch.nn as nn

class AGLU(nn.Module):
    """AGLU激活函数模块,来自于https://github.com/kostas1515/AGLU。"""

    def __init__(self, device=None, dtype=None) -> None:
        """初始化AGLU激活函数模块。"""
        super().__init__()
        # 使用Softplus作为基础激活函数,beta设为-1.0
        self.act = nn.Softplus(beta=-1.0)
        # 初始化lambda参数,使用均匀分布
        self.lambd = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype)))  
        # 初始化kappa参数,使用均匀分布
        self.kappa = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype)))  

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """计算AGLU激活函数的前向传播。"""
        # 确保lambda参数不小于0.0001
        lam = torch.clamp(self.lambd, min=0.0001)
        # 计算AGLU激活函数的输出
        return torch.exp((1 / lam) * self.act((self.kappa * x) - torch.log(lam)))

代码核心部分说明:

  1. AGLU类:这是一个自定义的激活函数模块,继承自nn.Module
  2. 初始化方法
    • self.act:使用Softplus作为基础激活函数。
    • self.lambdself.kappa:这两个参数是可学习的,使用均匀分布初始化。
  3. 前向传播方法
    • lam:对lambd进行裁剪,确保其最小值为0.0001,以避免在计算中出现数值不稳定。
    • 返回的值是通过Softplus激活函数和其他参数计算得到的AGLU激活函数的输出。

这个程序文件名为 activation.py,主要定义了一个名为 AGLU 的激活函数模块,属于 Ultralytics YOLO 项目的一部分,并遵循 AGPL-3.0 许可证。

在代码的开头,首先导入了 PyTorch 库及其神经网络模块。接着,定义了 AGLU 类,该类继承自 nn.Module,表示这是一个可以被 PyTorch 识别的神经网络模块。

AGLU 类的构造函数 __init__ 中,初始化了一个统一的激活函数。首先调用了父类的构造函数,然后创建了一个 Softplus 激活函数实例,设置其参数 beta 为 -1.0。接下来,定义了两个可学习的参数 lambdkappa,这两个参数的初始值是通过均匀分布随机初始化的,并且可以在指定的设备(如 GPU)和数据类型下进行初始化。

forward 方法是该模块的前向传播函数,接收一个张量 x 作为输入。在该方法中,首先对 lambd 参数进行裁剪,确保其值不小于 0.0001,以避免数值不稳定。然后,计算并返回激活函数的输出,具体的计算公式是通过 Softplus 函数和 lambdkappa 参数的组合来实现的。

总体来说,这个模块实现了一种新的激活函数,旨在提高神经网络的性能和稳定性,特别是在处理复杂数据时。

11.完整训练+Web前端界面+200+种全套创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/Vision-Studios/hnogwai203

参考原始博客2: https://github.com/Qunmasj-Vision-Studio/hnogwai203

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值