【四.图像分类技术体系】【2.残差学习革命:ResNet及其变体】

在这里插入图片描述

各位看官,今天咱们要聊的这个ResNet,绝对算得上深度学习界的"网红"鼻祖。这个2015年横空出世的模型,不仅把ImageNet比赛的错误率直接砍到3.57%(比人眼识别还准),更重要的是它彻底改变了人们对神经网络深度的认知。记得当年有个段子说:训练ResNet的时候,工程师最怕的不是模型不收敛,而是咖啡不够喝——因为网络动辄成百上千层,训练时间长得让人怀疑人生。不过玩笑归玩笑,这个让网络深度突破天际的"黑科技",咱们今天必须得掰开了揉碎了说清楚。

一、传统深度学习的"中年危机"

1.1 那些年我们追过的VGG和Inception

在ResNet登场之前,深度学习界的大佬们可都是VGG和Inception系列的忠实粉丝。VGG用着一水儿的3x3卷积,把网络怼到19层;Google家的Inception玩着"分叉-合并"的套路,把网络复杂度提升到新高度。但是老司机们渐渐发现事情不对劲——当网络深度超过20层后,模型的表现不升反降,你说气人不气人?

举个栗子&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值