【第五部分:实战项目进阶】【16.从零开始学NLP:情感分析与词向量模型实战指南(Word2Vec、BERT全解析)】

在这里插入图片描述

一、开篇:为什么情感分析是NLP的必修课?

在电商平台浏览商品时,你是否注意过那个"查看全部评论"的按钮?社交媒体上,品牌方如何快速判断用户对新品的态度?这些场景背后都依赖同一个核心技术——情感分析(Sentiment Analysis)。作为自然语言处理(NLP)的经典应用,情感分析能让计算机理解文本中的喜怒哀乐,将人类语言转化为可量化的情感标签(正面/负面/中性)。

但要实现精准的情感分类,必须突破两个核心难题:

  1. 语言的离散性:人类语言由一个个独立的词语组成,计算机如何理解这些符号的语义关联?
  2. 语义的复杂性:“这个手机续航太差,但拍照效果绝了”——这种复杂情感如何准确捕捉?

解决这些问题的关键,就是本文要深入解析的词向量模型(Word2Vec)和预训练模型(BERT)。我们将从最基础的文本预处理开始,逐步构建完整的情感分析技术栈。

二、文本预处理:让计算机看懂人类语言

2.1 分词:将文本拆解为基本单元

计算机无法直接处理连续的自然语言文本,第一步需要将其拆解为词语(Token)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

再见孙悟空_

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值