【bzoj4318】OSU! 期望dp

本文介绍了一款简化版osu!游戏的得分期望计算方法。通过输入操作次数及各操作的成功率,利用条件期望公式和立方差公式计算出最终的期望得分,并提供了具体的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

osu 是一款群众喜闻乐见的休闲软件。 
我们可以把osu的规则简化与改编成以下的样子: 
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。 

输入

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。 

输出

只有一个实数,表示答案。答案四舍五入后保留1位小数。 

样例输入


0.5 
0.5 
0.5

样例输出

6.0

题解:此题是BZOJ 3450 点升级版,根据立方差公式(x+1)3x3=3x2+3x+1
可以维护x和x^2,维护两个值的期望值,用条件期望的公式,x1=(x1+1)*P:(到达次状态的期望值+贡献值)* 概率,x2 用平方差公式维护.

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
int n;
int main(){
	double P , x1=0.0 , x2=0.0 , ans = 0.0;
	scanf("%d",&n);
	while(n--){
		scanf("%lf",&P);
		ans = ans+(( + 1.0 + x1*3.0 + x2*3.0)*P);
		x2 = ((x2+  x1*2.0 + 1.0) * P) ;
		x1 = ( (x1+1.0) * P );
	}
	printf("%.1lf",ans);
	return 0;
}


(x+1)3x3=3x2+3

(x+1)3x3=3x2+3x+1
(x+1)3x3=3x2+3x+1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值