文章目录
在目标检测领域,YOLO 系列算法凭借其出色的速度与精度平衡,一直是众多研究人员关注的焦点。如今,我们带来了全新的 YOLOv8 改进方案,通过融合轻量化 CCFM 与 SENetv2,实现性能的显著提升,这在整个网络领域都属于独家首发内容,将为 YOLOv8 的应用拓展新的边界。
一、YOLOv8 的发展现状与改进需求
(一)YOLOv8 的优势
YOLOv8 作为 YOLO 系列的最新版本,在目标检测任务中展现出了卓越的性能。其在保持快速推理速度的同时,大幅提升了检测精度,能够有效地处理各种复杂场景下的目标检测问题,从实时安防监控到自动驾驶等众多领域都有广泛的应用前景。
(二)现有改进的局限性
尽管 YOLOv8 性能优秀,但当前许多改进方法要么在模型结构上做复杂化调整,导致推理速度大幅下降,难以实际满足应用对实时性的要求;要么在特征融合等方面改进不够深入,无法充分挖掘特征信息的潜力,精度提升有限。因此,探索一种既能提升精度,又能兼顾模型轻量化的改进方案成为亟待解决的问题。