文章目录
一、前言
在目标检测领域,YOLO系列算法一直以其高效的检测速度和较好的检测效果备受关注。从YOLOv1到如今的YOLOv8,每一次版本的迭代都带来了性能上的提升和架构上的优化。YOLOv8在保持了YOLO系列算法优点的基础上,进一步提升了检测的精度和速度。然而,随着应用场景的复杂性增加,单一的检测头有时难以满足对不同类别物体(尤其是小目标和密集目标)的精确检测需求。因此,本文将探讨一种基于YOLOv8的改进方法:通过引入DynamicHead来增加辅助检测头,形成一个四头版本的检测模型,以实现更有针对性的检测。
二、DynamicHead简介
DynamicHead是一种可动态调整的检测头模块,其核心思想是根据输入数据的特点动态调整检测头的参数,从而更好地适应不同类别和不同大小物体的检测需求。它通过学习输入特征与输出检测结果之间的映射关系,能够在训练过程中自动调整检测头的权重,提高模型对难检测物体的检测能力。
与传统的固定结构检测头相比,DynamicHead具有更强的适应性和灵活性,可以在不同的检测任务中表现出更好的性能。尤其是在处理小目标、密集目标以及类别不平衡等问题时,DynamicHead能够动态调整检测策略,提高检测的准确性和鲁棒性。这种动态调整的机制使得DynamicHead成为一种理想的用于改进YOLOv