#566. 完全背包问题(knapsack)

该问题是一个经典的背包问题,通过动态规划求解最大价值。程序首先读入背包容量M和物品数量N,然后对每个物品的重量和价值进行遍历,使用三层循环计算在不超过当前背包容量的情况下,选取物品的最大价值。最后输出最大总价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Background

Special for beginners, ^_^

Description

设有 nn 种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为 MM,今从 nn 种物品中选取若干件(同一种物品可以多次选取),使其重量的和小于等于 MM,而价值的和尽可能大。

Format

Input

第 11 行:两个整数,MM(背包容量,M\le 200M≤200)和 NN(物品数量,N\le 30N≤30);

第 2\dots N+12…N+1 行:每行二个整数 W_i,C_iWi,Ci,表示每个物品的重量和价值。

Output

仅一行,一个数,表示最大总价值,请注意输出格式。

Samples

输入数据 1

10 4
2 1
3 3
4 5
7 9

Copy

输出数据 1

max=12

Copy

Limitation

1s, 1024KiB for each test case.

#include<bits/stdc++.h>
using namespace std;

const int N=1007;

int w[N];

int v[N];

int dp[N][N];

int main(){
    int m,n;
    cin>>m>>n;
    for(int i=1;i<=n;i++)cin>>w[i]>>v[i];
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            for(int k=0;k*w[i]<=j;k++)dp[i][j]=max(dp[i][j],dp[i-1][j-k*w[i]]+k*v[i]);
        }
    }
    cout<<"max="<<dp[n][m];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值