【超分辨率】VDSR--Accurate Image Super-Resolution Using Very Deep Convolutional Networks

本文介绍了一种新的超分辨率重建方法VDSR,通过堆叠小型滤波器实现41x41的大感受野,利用残差学习加速收敛并解决深层网络训练中的梯度问题。相较于SRCNN,VDSR提高了训练效率且能适用于多尺度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文链接:https://arxiv.org/abs/1511.04587
论文code: https://github.com/huangzehao/caffe-vdsr

这篇文章通过stack filters来获得一个比较大的感受野。最大达到41x41的感受野,在形式上,其实更有点像ResNet。通过一个global的residual connect来解决加深网络而导致的梯度问题。

本文认为Dong的SRCNN虽然成功把CNN引入到SR中,但是依然受限于三个方面:1.SRCNN依赖于一些比较小的感受野;2. 训练收敛速度太慢;3. 这个网络只能work for 一个单一尺度。

在本篇论文中,作者提出一个新方法来解决这些issue。
Context: 本文通过stack small filters来进行获得一个比较大的感受野,最大达到41x41。事实上,大的感受野可以有效帮助我们进行超分辨率重构。
Convergence: 本文通过residual learning来学习Input和Output之间的difference。由于仅学习残差,因此learning rate可以设置的比较大,可以更快的加速收敛。
Contribution: 作者通过stack filters来获得比较大的感受野,并通过high learning rate来加快收敛。然而deep 网络和high learning rate会出现梯度爆炸,因此作者提出residual-learning和gradient clipping。

主要idea就是: 1)stack small filters; 2)Residual Learning.

这里写图片描述

ResNet和VDSR两者结构比较:

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值