
AI与医疗
文章平均质量分 90
明哲AI
AIGC、LLM(大模型)技术研究与商业变现
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
借助 DeepSeek 技术实现医疗大模型知识蒸馏
想象一下,你有一位知识渊博的老师(教师模型),他/她非常聪明,但可能有点“笨重”(模型参数多,计算量大)。你还想培养一位学生(学生模型),这位学生不需要像老师那样“博大精深”,但希望他/她能尽可能学到老师的精华,用更“轻巧”的方式(模型参数少,计算量小)完成任务,并且表现接近老师。原创 2025-02-16 14:34:03 · 1236 阅读 · 0 评论 -
从Deepseek谈,AI时代医药人如何直面天命
在药企的应用场景中,通过将RAG技术与企业知识库相结合,当AI系统面对用户的问题时,首先会在企业知识库中进行检索,找到与问题最相关的知识片段,然后基于这些知识生成准确、专业的回答。这种技术不仅能提高AI回应的质量,还能充分激活企业数据资产的价值,将分散的知识资源转化为可被AI利用的智能资产,从而打造差异化竞争优势、通过对海量的医药文献、临床试验数据、药品说明书、专家经验,以及企业内容的各种工作文档,等进行收集、整理和存储,形成结构化或非结构化的知识库,为企业内部的AI应用使用提供可靠和私有化的识来源。原创 2025-02-16 14:27:17 · 814 阅读 · 0 评论 -
Deepseek与中医:当全球AI遇上世界中医(二)干中学
目前大部分中医还没有真正认识到Deepseek等新一代AI大模型工具的价值,也没有真正在自己的学习与工作中应用起来。在用好AI的基础上,中医才能提出更多的改进建议。在Deepseek等AI大模型工具的普及背景下,很有可能出现换着持AI生成的诊疗方案质疑专业中医师的现象。首批50名临床中医成员,不论是中医名家,还是青年中医都可以加入,只要你对中医有思考、有经验,对AI有兴趣,对AI有想法都可以。核心成员必须认同中医,可以是名校,也可以是多年经验的AI算法工程师、AI应用工程师等。原创 2025-02-13 18:18:36 · 954 阅读 · 0 评论 -
Deepseek与中医:当全球AI遇上世界中医(一)
本文旨在探讨:当前以DeepSeek为代表的大模型在中医辅助诊疗中的实际效能评估,以及未来中医AI发展的可能路径。结合AI,可以构建新一代中医教学体系,包含中医知识图谱构建、教学动态交互,虚拟现实+AI大模型的语音交互等、虚拟实训等场景。调研对象对Deepseek的接触还蛮少的,目前还没有搜集到样本,暂时没法探索中医AI在海外的落地价值。一些相对偏远山区的医疗水平明显不足,如果有一个AI,可能比他传统的村医水平强很多,所以说中医A辅助治疗是中医AI在基层医疗服务有强需求。是来抢中医的饭碗吗?原创 2025-02-13 10:02:02 · 1378 阅读 · 0 评论 -
多家医院已部署Deepseek大模型,AI大模型在医院应用场景剖析
AI大模型将在创新药物研发的关键环节,例如药物靶点的发现与精准验证、药物分子结构的设计与智能优化、以及临床试验流程的智能化加速等领域,发挥日益关键的核心作用,从而大幅缩短新药研发的周期,显著降低药物研发的总体成本,加速创新型药物的上市进程,最终惠及更为广大的患者群体。AI辅助诊断、AI健康智能宣教等创新应用,可以将医生从部分重复性、低价值的繁琐工作中有效解放出来,显著提升医生的工作效率与单位时间内的服务效能,从而在不大幅增加医生数量的前提下,有效提升医疗服务的供给能力,缓解医生资源短缺所带来的巨大压力。原创 2025-02-11 17:29:55 · 1872 阅读 · 0 评论 -
从Hippocratic AI融资1.41亿美元,看中国医疗智能体发展机会
DeepSeek的国运级创新与Hippocratic AI的垂直深耕殊途同归,共同指向医疗智能体的未来——不再是单一的技术工具,而是重塑医疗体系的战略性基础设施。虽然医疗诊断需要高度的专业判断,但在初步筛查、健康咨询和非紧急问题处理上,AI Agent可以提供24小时不间断的服务,辅助医生减轻工作负担,有效缓解医疗资源的供需矛盾,提升医疗服务的可及性。中国企业可以借鉴其“垂直化”、“平台化”的策略,结合本土市场的特点,在慢病管理、居家养老、健康管理等领域,打造具有中国特色的医疗智能体解决方案。原创 2025-02-10 09:53:18 · 1089 阅读 · 0 评论 -
医院如何建设自己的Deepseek大模型
Deepseek 模型的训练成本显著低于其他同类模型,开源与低成本的双重优势,为预算敏感型的医院提供了极具吸引力的选择,加速了 AI 技术在医疗领域的普及和应用。数据自主,模型可控。Deepseek 等开源大模型的出现,打破了传统 AI 技术被少数巨头垄断的局面,医院无需支付高昂的授权费用,即可获得最先进的 AI 技术。本文旨在深入剖析 Deepseek 大模型的技术优势与突破,解读其为医院带来的战略机遇,并为医院自主训练专属医疗大模型,构建真正自主可控的智慧医疗体系,指明清晰可行的路径。原创 2025-02-07 18:02:23 · 1590 阅读 · 0 评论 -
DeepSeek:医生职业价值的智能赋能者
例如,消化科医生输入腹痛患者的症状后,模型可输出“可能性排名+检查建议”的表格,辅助医生优先排查高风险疾病。通过指令调整(如“用通俗语言解释心肌梗死”),DeepSeek可将专业术语转化为患者易懂的内容,帮助儿科医生向家长解释疫苗接种的必要性,减少信息差导致的医患矛盾。DeepSeek根据患者年龄生成差异化的沟通内容,如为老年患者设计简明的用药指南,或为儿童设计互动式健康科普故事,提升患者依从性。模型自动生成符合最新指南的培训课件,例如为住院医师设计心衰诊疗模拟案例,结合实时更新的指南内容,加速知识迭代。原创 2025-02-08 07:15:00 · 2007 阅读 · 0 评论 -
Deepseek在药学的应用系列(一)| Deepseek在辅助临床药师撰写用药教育材料中的应用价值
随着医疗模式的转变和患者自我管理意识的增强,用药教育在现代药学服务中扮演着日益重要的角色。临床药师作为药学服务的核心提供者,承担着为患者提供准确、易懂、个性化用药指导的重任。然而,高质量用药教育材料的开发往往耗时耗力,且需要药师具备多方面的专业技能。近年来,人工智能(AI)技术的快速发展为解决这一难题带来了新的思路。本文将探讨人工智能,并以Deepseek等为例,在辅助临床药师用药教育材料开发中的应用价值。原创 2025-02-07 11:27:38 · 1321 阅读 · 0 评论 -
如何训练具有深度思考的医疗版Deepseek?
它最大的优势在于完全免费且无使用限制,这为医疗 AI 的发展带来了新的机遇,尤其是在数据隐私和模型透明度至关重要的医疗场景中。将 DeepSeek R1 与 DSPy 结合,我们可以构建一个自改进的医疗推理系统:流程可以从反馈中学习(例如,诊断是否正确),并进行调整以最大化准确性。因此,利用 DeepSeek R1 的强大推理能力和 DSPy 的模块化设计,结合强化学习技术,可以快速打造一个能够进行深度思考、辅助医疗决策的 AI 系统。记住,我们的目标是辅助医疗,而不是取代医生。原创 2025-02-06 15:19:35 · 2208 阅读 · 0 评论 -
PatientSeek:首个基于Deepseek r1的开源医疗法律推理模型
与传统的医疗或法律流程不同,医疗法律领域需要进行大量的关联和联想,尤其是在医疗因果关系的问题上,其结论需要经得起法律标准的检验。这种对数据预处理的重视,体现了 WhyHow.AI 团队对数据质量的高度关注,也为其他开发者提供了宝贵的经验。DeepSeek R1 模型的发布,标志着开源推理模型性能的显著提升,使其在成本可控的前提下,具备了媲美甚至超越闭源模型的潜力。PatientSeek 的出现,顺应了这一趋势,将先进的推理能力带入医疗法律领域,有望大幅提升该领域的工作效率和决策质量。原创 2025-02-01 22:38:57 · 1698 阅读 · 0 评论 -
Deepseek r1模型对医疗大模型的发展有什么影响?
1.DeepSeek R1 是一款基于纯强化学习(RL)训练的开源推理模型,其核心在于通过环境反馈而非人工标注数据来优化模型行为。这种方法不仅降低了对标注数据的依赖,还显著提升了模型的推理能力。例如,DeepSeek R1 在后训练阶段大规模使用了强化学习技术,使其在极少标注数据的情况下也能达到接近 OpenAI o1 模型的性能水平。DeepSeek R1 的强化学习框架采用了多阶段训练方法,包括基础训练、强化学习和微调等步骤交替进行,进一步提升了模型的推理能力和思维链长度。原创 2025-01-30 19:25:30 · 1671 阅读 · 0 评论 -
AI与药学 |AI数字药师:药品说明书构建AI药学知识库
在信息爆炸的时代,我们获取知识的方式正在经历深刻的变革。尤其是在医疗健康领域,快速、准确地获取可靠的药品信息至关重要。药品说明书作为药品信息的权威来源,却常常因为其专业术语和冗长篇幅,让使用者感到困惑。如何让药品说明书不再“晦涩难懂”,成为我们智能用药的得力助手?本文将深入探讨如何利用技术,将药品说明书转化为一个高效、易用的知识库,帮助用户快速获取所需药品信息,提升用药安全性和便捷性。原创 2025-01-27 11:58:06 · 1481 阅读 · 0 评论 -
MedGraphRAG:解锁医疗AI的“超级大脑”,让诊断更精准、更安全
MedGraphRAG,检索增强生成(RAG),图谱检索增强生成(GraphRAG),大型语言模型(LLMs),知识图谱,图神经网络,三重图构建,U型检索,医疗人工智能,临床决策支持,医学知识问答,可解释性,可靠性,准确性,统一医学语言系统(UMLS)这种结构化的知识表示方式,也为后续的检索和推理奠定了坚实的基础。的力量,将医疗知识组织成**知识图谱(KnowledgeGraph)**的形式,就像一张巨大的“关系网”,清晰地展现各种概念之间的联系,为医疗LLM构建了一个更智能、更安全的“智慧大脑”。原创 2025-01-19 15:12:09 · 958 阅读 · 0 评论 -
美国HHS 重磅发布AI战略计划:AI全面赋能医疗健康未来!
因此,该战略规划强调了负责任 AI 的重要性,提出了一系列风险管理措施,包括加强数据安全和隐私保护,提高算法的透明度和可解释性,确保算法公平性等。2. 医疗产品开发、安全性和有效性:AI 将贯穿药物、生物制品和医疗器械的整个生命周期,从临床试验、生产制造到上市后的安全性和有效性监测,AI 都将发挥重要作用。4. 人类服务:AI 将提升社会服务的可及性和质量,例如通过更快速、准确的申请处理流程,更精准的服务推送,以及实时翻译工具,AI 能为弱势群体提供更便捷、更个性化的支持。原创 2025-01-13 11:30:48 · 801 阅读 · 0 评论