表格数据整合新方案,告别手动合并表格

在日常的数据处理中,如果你经常需要从多个 Excel 文件中提取特定行或列的信息,你一定经历过手动复制粘贴的繁琐与低效。今天,我为大家带来一个轻量而高效的解决方案,能够一键完成多表格数据抓取与整合,非常适合办公族和技术人员使用。

它是一款绿色免安装工具,体积不到 1MB,下载后即可直接运行,无需额外配置。

支持三大核心功能:提取单行、定位单元格提取、批量提取多行数据,灵活应对多种汇总场景。

操作方式非常直观,只需将目标文件夹拖入程序界面,设置好提取规则,点击执行即可自动完成整理。

我在测试中提取并合并了 100 条记录,整个过程仅用了几秒钟,响应迅速、效率出众。

「EXCEL提取汇总.zip」:https://pan.quark.cn/s/11d6e8617a49

最终结果会自动生成在一个新文件中,保存位置就在原始文件夹内,方便查找和导出。

内容概要:本文档详细介绍了基于MATLAB实现的多头长短期记忆网络(MH-LSTM)结合Transformer编码器进行多变量时间序列预测的项目实例。项目旨在通过融合MH-LSTM对时序动态的细致学习和Transformer对全局依赖的捕捉,显著提升多变量时间序列预测的精度和稳定性。文档涵盖了从项目背景、目标意义、挑战与解决方案、模型架构及代码示例,到具体的应用领域、部署与应用、未来改进方向等方面的全面内容。项目不仅展示了技术实现细节,还提供了从数据预处理、模型构建与训练到性能评估的全流程指导。 适合人群:具备一定编程基础,特别是熟悉MATLAB和深度学习基础知识的研发人员、数据科学家以及从事时间序列预测研究的专业人士。 使用场景及目标:①深入理解MH-LSTM与Transformer结合的多变量时间序列预测模型原理;②掌握MATLAB环境下复杂神经网络的搭建、训练及优化技巧;③应用于金融风险管理、智能电网负荷预测、气象预报、交通流量预测、工业设备健康监测、医疗数据分析、供应链需求预测等多个实际场景,以提高预测精度和决策质量。 阅读建议:此资源不仅适用于希望深入了解多变量时间序列预测技术的读者,也适合希望通过MATLAB实现复杂深度学习模型的开发者。建议读者在学习过程中结合提供的代码示例进行实践操作,并关注模型训练中的关键步骤和超参数调优策略,以便更好地应用于实际项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值