单精度浮点数存储格式理解

最近看浮点数产生了很多疑问,在网上找答案的时候发现,很多文章都只是告诉你浮点数是怎么样的,但是没有解答为什么要这样,于是自己思考写下自己的理解。

浮点数的二进制表示中,标准格式一般为

2^{-m}

比如3.625转化为标准格式为:11.101

而存储到计算机中,不是使用的标准格式,而是使用存储格式。

为什么不是使用标准格式来作为存储格式?

设想一下,假如是使用标准格式来作为存储格式,是不是需要规范前几位为整数位,后几位为小数位。比如前8位作为整数位,那如果现在的数据内容整数位为0,如0.625……的话,就浪费了前八位的空间,这个浪费是以牺牲小数精度为代价。所以才有了存储格式这么个东西。

存储格式介绍

存储格式的规范如下,以单精度浮点数为例,总的长度为32位:

符号位指数位尾数位
1823

符号位最简单,表示正负。

在介绍指数位之前,先了解尾数位:

尾数位实际上是还有一个隐藏位为1在尾数位的左侧。

如3.625的二进制格式:11.101 = 1.1101\times 2^{1}(1即是指数位)

(如果不能理解的话,可以将二进制转为10进制来理解:1.1101\times 2^{1} = (1+2^{-1}+2^{-2}+2^{-4})\times 2 = (1+0.5+0.25+0.0625)\times 2 = 1.8125\times 2 = 3.625

负指数也一样,如果是0.625,二进制格式为:0.101 = 1.01\times 2^{-1}(-1是指数位)

即将所有浮点数的标准格式转化为:1.n...\times 2^{m},而1就是隐藏位,不会存储在数据中。这样的好处是,将更多的空间用来存放有效位置,像前边提到的0.4564545……这种很长的浮点数,可以更好的保留精度。

为什么隐藏位是1,而不是0?

不管隐藏位是1还是0,对于指数位是没有影响的,因为可存储的范围不会改变。

但是,用1却可以增加尾数的范围,将一个有效位隐藏,则可以空出多一位来存储后边的一位精度。但是这个时候就会发现,0怎么表示?其实,在浮点数中0是特殊处理的,当指数位全0,尾数位全0时,代表0 。

指数的转换

介绍完了尾数,介绍指数位,如0.625的指数位是-1,用二进制表示的话会需要占用一个符号位:10000001

但是放在存储格式中,实际上的二进制表达是需要给转换一下的,如果有了解过,应该都知道对于单精度浮点数而言,这个转换就是加上127 。

为什么是加127?

因为指数是有正负值的,所以,如果保留符号位的话,8位的指数位可表达范围是:-127~127

而如果给他加上127的偏移量,范围则变成0~254

而因为现在值全都大于等于0了,所以不需要符号位,范围变成:0~255

加了偏移量,可以增加指数的表示范围。

所以比如-1的指数二进制格式为:-1+127 = 126,二进制格式为:01111110

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值