
麻将/扑克alphago/Douzero强化学习
文章平均质量分 89
强化学习
医疗AI强化曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站70强博客、总600w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(微chat同GitHub:ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
DouZero eagle项目解读
该项目通过组织良好的模块结构实现了斗地主AI的训练和评估,使用了。中表现出色的AI模型。训练一个能够在斗地主游戏。强化学习的斗地主AI。训练、评估、生成数据。强化学习的DMC算法。原创 2025-02-14 16:48:29 · 362 阅读 · 0 评论 -
你所不知道的都昌讨赏规则
那么,讨赏规则你又了解多少?下面就让我们一起来看看吧。若同一方抓到同样的牌型,则系统重新翻牌,或是1打3。3个纯炸弹将于额外的赏,炸弹奖励可以累加。游戏可使用2打2模式,也可以1打3。王炸是都昌讨赏中较大的牌型。,如果没有可以放弃。发布时间:2017-04-19。家喻户晓的扑克游戏。说起九江,小编首先想到的就是。选择一张明牌,抓到该牌的玩家。都昌讨赏,这是一款九江地区。两副牌,4位玩家每人27张。王是百搭牌,可当任何牌使用。,那么你将获得新的出牌权。两两对抗,也可以1打3。连对、三张、顺子、炸弹。原创 2025-02-28 11:48:12 · 471 阅读 · 0 评论 -
用地表最强斗地主AI-DouZero实现连炸玩法AI
DouZero是一个为斗地主设计的强化学习框架。斗地主十分具有挑战性。它包含合作、竞争、非完全信息、庞大的状态空间。斗地主也有非常大的动作空间,并且每一步合法的牌型会非常不一样。DouZero由快手AI平台部开发。原创 2025-02-17 09:46:26 · 2150 阅读 · 0 评论 -
openspiel deepmind公开的棋类环境 Github
请注意,在英语中,“游戏”一词既用于描述规则(例如国际象棋游戏),也用于描述游戏的具体实例(例如“我们昨天玩了一盘国际象棋”)。例如,在扑克中,根状态只是没有任何牌的玩家,第一个转换将是机会节点,用于向玩家发牌(实际上,每次转换发牌一次)。转换是玩家采取的行动(如果是同时节点,则转换由所有玩家的行动组成)。请注意,在大多数游戏中,我们使用明确的玩家(“机会”玩家,其 id 为。玩家同时进行的游戏加载到等效的回合制游戏中,其中同时进行的移动被编码为。以获得更详细的示例,其中涵盖了更多核心 API 的使用。原创 2025-02-19 15:23:37 · 464 阅读 · 0 评论 -
ICML 2021 | DouZero斗地主AI深度解析,以及RLCard工具包介绍
Daochen将门创投2021年07月28日 08:22最近开源了DouZero(斗零)人工智能系统。鉴于大部分教程和说明都是英文的(比如论文、文档等),在这篇文章中,我将用通俗易懂的语言详细解析DouZero背后算法的原理,供大家参考。之后我会介绍RLCard,一个专门为游戏AI设计的开源工具包。RLCard也已经集成了DouZero中的算法,并且支持八种游戏实现(包括斗地主、麻将、德州扑克等)以及各种强化学习算法(比如DouZero中使用的算法等)。原创 2025-02-14 10:36:37 · 959 阅读 · 0 评论 -
Teaching AI Algorithms with Games Including Mahjong andFightTheLandlord on the Botzone
本文介绍了一门名为《游戏AI算法》的课程设计,作为本科选修课程。该课程主要关注游戏AI领域常见且最先进的算法,包括基于游戏树的算法和强化学习。在博智在线平台的驱动下,我们的游戏AI平台设计了不同类型的作业,以提供丰富有趣的学习体验。我们选择了几类游戏,其中包括两款流行的中国经典游戏——麻将和斗地主,它们都是合作性、随机性和部分可观测性的。据我们所知,这是首次将这些游戏应用于AI课程中,从而为游戏AI教育提供了新的基准。为了鼓励参与并减少挫败感,采用了基于里程碑的比赛和奖励任务。原创 2025-02-18 11:13:56 · 598 阅读 · 0 评论 -
科学论文2019 德扑 Superhuman AI for multiplayer poker
本文介绍了Pluribus,一种能够在六人无限制德州扑克中击败顶级人类职业玩家的AI。原创 2024-12-30 15:04:00 · 662 阅读 · 0 评论 -
扑克强化学习:DouZero/douzero/dmc/dmc.py
100 的双端队列,用于存储最近 100 次的平均回报。训练设备(CPU 或指定的 GPU)。数据批次(包含观测、动作、奖励等)。: 包含获取数据批次、日志记录。玩家角色(地主/上家/下家)。观测和动作,并拼接成。已经完成的游戏的回报。到对应角色的队列中。原创 2025-02-14 17:00:39 · 724 阅读 · 0 评论 -
请你详细描述这款都昌讨赏扑克游戏和斗地主还有跑得快的区别和联系
共同点都是以出完手牌为胜利目标的扑克游戏基本牌型有重叠(单张、对子、炸弹等)牌点大小顺序基本一致都有出牌控制权传递机制主要区别都昌讨赏的队友关系隐藏性更强,打法更复杂都昌讨赏的计分系统更复杂,主要围绕"讨赏"展开都昌讨赏使用两副牌,牌型组合更多样都昌讨赏有多种游戏模式(经典模式、炸弹模式)都昌讨赏的炸弹分级更细致,有6炸、7炸等不同等级都昌讨赏可以看作是在跑得快和斗地主基础上发展出的更复杂的变种,增加了更多策略性和团队协作元素。ds r1。原创 2025-02-28 14:31:23 · 952 阅读 · 0 评论 -
博弈论在截至到最新2025年的发展是什么? 我怎么感觉并没有太大进步,比方说理论上强烈依赖博弈的棋牌如麻将、扑克、德州扑克等等,都被强化学习相关AI技术取代,博弈论已经过时了吗?
嗯,用户的问题是问博弈论在2025年的发展情况,并且觉得博弈论可能过时了,因为像麻将、扑克这些博弈类游戏已经被强化学习的AI技术取代。我需要结合搜索结果来分析,看看博弈论的最新发展,以及它是否真的过时了。首先,我得看一下用户提供的搜索结果。网页1提到博弈论在深度强化学习(DRL)中的新趋势,比如平均场博弈、随机博弈和进化博弈。这些新方法正在影响DRL的发展,特别是多智能体环境中的应用。比如平均场博弈处理大量智能体的互动,随机博弈用于解决多玩家协作和竞争问题,而进化博弈则关注策略的动态演化。原创 2025-02-15 04:35:28 · 931 阅读 · 0 评论 -
扑克强化学习/DouZero/douzero/evaluation/simulation.py
以下是斗地主强化学习中的深度蒙特卡罗算法部分,请逐行解释如下代码,line by line 用中文。模型路径或类型(如随机、RLCard。: 重置环境,为下一局游戏做准备。并为每个角色分配对应的模型。总胜场数(因为农民有两人)。三个角色(地主、上家、下家。地主总得分 / 总胜场数。游戏环境类,提供初始化。,使用深度学习模型。模拟的一组游戏数据。每个元素代表一局游戏。: 初始化这一局游戏。原创 2025-02-17 11:45:49 · 732 阅读 · 0 评论 -
Science学界 | 新论文提出玩扑克人工智能DeepStack:已达职业玩家水平
近些年来,人工智能领域出现了很多突破,其中游戏往往被用作重要的里程碑。过去实现那些成功的游戏的一个常见的特征是它们都涉及到玩家之间的信息对称,即所有的玩家都获取了相同的信息。然而和游戏相比,这种完美信息(perfect information)的性质在真实世界问题中却少见得多。扑克是一个典型的不完美信息(imperfect information)游戏,而且其一直以来都是人工智能领域内的一个难题。在这篇论文中,我们介绍了 DeepStack,这是一种用于扑克这样的不完美信息环境的新算法。原创 2025-02-19 13:44:29 · 843 阅读 · 0 评论 -
ICML 2021] DouZero: 从零开始通过自我博弈强化学习来学打斗地主 Github
DouZero是一个为斗地主设计的强化学习框架。斗地主十分具有挑战性。它包含合作、竞争、非完全信息、庞大的状态空间。斗地主也有非常大的动作空间,并且每一步合法的牌型会非常不一样。DouZero由快手AI平台部开发。原创 2025-02-17 10:45:05 · 1361 阅读 · 0 评论 -
DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning
本文介绍了一种名为DouZero的AI系统,旨在通过自对弈深度强化学习来掌握中国流行的三人扑克游戏——斗地主。原创 2025-02-14 10:26:46 · 1176 阅读 · 0 评论 -
快手开源的 AI 游戏,直冲排行榜第一名! DouZero 抖零
很久没有给大家推荐过 Github 开源项目啦,实在是因为最近没在 GitHub 上看到啥有意思的项目。一番体验下来,鬼哥我感觉这个 AI 技术确实不赖,真不是咱们之前体验的那种 AI 斗地主,就很真实。但是,昨天鬼哥我在 GitHub 上看到了一个斗地主项目,觉得还不错,今天就和大家分享分享。,是一个在线的程序对抗平台,大家开发的 AI 可以根据已有的游戏规则在上面进行比赛。,然后就在 Botzone 的 AI 斗地主区称霸了,在整个排行榜。嘛,然后在右侧会显示 AI 出牌的概率。DouZero 抖零。原创 2024-12-30 14:16:08 · 264 阅读 · 0 评论 -
机器人强化学习相关学术速递[2.17]
穿越具有稀疏立足点的危险地形对人形机器人构成了重大挑战,需要精确的足部位置和稳定的运动。现有的方法设计的四足机器人往往无法推广到人形机器人由于脚的几何形状和不稳定的形态的差异,而基于学习的方法的人形运动仍然面临着巨大的挑战,由于稀疏的立足点奖励信号和低效的学习过程中复杂的地形。为了解决这些挑战,我们引入了BeamDojo,这是一个强化学习(RL)框架,旨在实现在稀疏立足点上敏捷的人形运动。原创 2025-02-22 23:51:36 · 939 阅读 · 0 评论 -
第二届腾讯“开悟”大赛初赛放榜,在王者峡谷中的强化学习研究还能这么快乐?
今年8月,腾讯宣布与四所国内一流高校(北京大学、电子科技大学、清华大学、中国科学技术大学)的老师合作开发基于“开悟”平台的人工智能实践课程,理论授课包括但不限于机器学习、强化学习、多智能体决策等相关的知识点,运用王者荣耀作为实践验证场景,以更轻松的方式,传授同学们AI相关知识。陈华玉至今印象最深刻的,还是初赛期间所遇到的难题,以及解决这些问题时巨大的成就感:“当发现我们想出的数据,真的有助于算法改进的时候,这种感觉还挺好的。”陈华玉说,与他有相同想法的同学很多,招人信息发出去后,马上收到了20多份简历。原创 2025-03-03 10:29:08 · 810 阅读 · 0 评论 -
强化学习:被OpenAI统一流派,由DeepSeek发扬光大
原创 小栖vei 舒淼2025年02月25日 16:44北京当狗狗听你指挥坐下,你给他一块骨头当狗狗不听指挥咬断电线,你饿他一天不给食物这种训练宠物的模式在心理学中被称为操作性条件反射当这种模式进入到模型训练领域,就变成了强化学习的思想ps:5分钟读完本文,你将完全了解强化学习的前世今生,大有所获。原创 2025-03-03 11:04:24 · 1003 阅读 · 0 评论 -
超越人类!DeepMind强化学习新突破:AI在「我的世界」中封神!
此前的最佳智能体只能达到2.3%的奖励,而DeepMind团队的MFRL智能体取得了4.63%的奖励,MBRL智能体则更是将奖励提高到5.44%,再次刷新了SOTA纪录。M5模型由于其采用了最近邻标记器(NNT),保持了所有时间步中最高的符号准确率,表明其能够更好地捕捉游戏动态,并且NNT使用的静态代码本简化了TWM的学习过程。M5: M4 + BTF:在M4的基础上,引入块教师强制 (BTF),最终的奖励达到67.42%(±0.55),成为论文中最佳的 MBRL智能体。原创 2025-03-03 11:02:57 · 901 阅读 · 0 评论 -
请问DeepMind和OpenAI身后的两大RL流派有什么具体的区别?
DeepMind和OpenAI都在深度强化学习领域取得了不错的成绩,但是通过分析David Sliver和Sergey Levine的一些Tutorial细节,我感觉到他们对于RL的理解和实现思路有比较大的不同。请问有没有一种对这两个RL研究机构更深入的对比?他们也关注了该问题2021 年度新知答主 关注4345 人赞同了该回答谢邀。这是个很好的问题,能看出这个差别说明RL还是上路了。这学期我正好在教Reinforcement learning的课程(课程主页。原创 2025-03-03 11:06:01 · 866 阅读 · 0 评论 -
Dreamerv3 Mastering Diverse Domains through World Models 世界模型
这篇论文介绍了DreamerV3算法,旨在通过一个通用的算法来掌握广泛的领域,从而解决人工智能中的基本挑战。原创 2025-01-13 14:16:07 · 1348 阅读 · 0 评论 -
项目是DreamerV3的重新实现 项目概览
其代码库结构清晰,模块化设计使其可扩展性强,适合在多种环境下进行实验和应用。该项目是DreamerV3的重新实现,这是一个可扩展的通用强化学习算法,旨在通过。DreamerV3项目通过世界模型的方式改进了。DreamerV3通过从经验中学习世界模型。世界模型和actor-critic策略。训练actor-critic策略。reamerV3的主要算法实现。环境交互、核心功能、JAX相关。递归状态空间模型(RSSM)多种领域中使用固定的超参数。预测动作给定的未来表示。依赖的Python包。原创 2025-01-13 14:42:43 · 571 阅读 · 0 评论 -
利用离散世界模型掌握 Atari Dreamer github 强化学习
DreamerV2 从潜在状态的想象轨迹中学习参与者和评论家网络。轨迹从之前遇到的序列的编码状态开始。然后,世界模型使用选定的动作及其学习到的状态进行预测。评论家使用时间差异学习进行训练,参与者通过强化和直通梯度进行训练以最大化价值函数。为此,它使用紧凑的学习状态进行预测。这些状态由确定性部分和几个采样的分类变量组成。绘图脚本还将多次运行的分箱和聚合指标存储到单个 JSON 文件中,以便于手动绘图。这要求您设置具有 GPU 访问权限的 Docker。给训练脚本来禁用混合精度。指南中的损失缩放下进行了描述。原创 2025-01-13 13:47:15 · 1219 阅读 · 0 评论 -
DouZero斗地主AI深度解析,以及RLCard工具包介绍
DouZero对游戏AI的开发和强化学习的研究能带来哪些启发呢?首先,简单的蒙特卡罗算法经过一些加强效果可以很好。蒙特卡罗方法没有什么超参,实现简单,在实际应用中值得一试。从简单开始,可以更好地理解问题、设计特征、快速实验。其次,(我希望)蒙特卡罗方法能再次受到重视。蒙特卡罗方法自深度学习以来一直不受重视。大多数研究都基于DQN或者Actor-Critc,算法越来越复杂、超参越来越多。DouZero表明在有些时候,蒙特卡罗方法可能有惊人的效果。什么情况下蒙特卡罗方法适用,什么情况下不适用,还需要更多的研究。原创 2025-01-13 13:54:14 · 1651 阅读 · 0 评论 -
详解ppo算法
PPO 是一种高效、稳定的策略优化算法,通过限制策略更新的幅度,克服了传统策略梯度方法的不稳定性。其简单的实现和优越的性能,使其成为深度强化学习领域的主流算法之一,被广泛应用于游戏AI(如OpenAI Five)和机器人控制等任务。PPO(Proximal Policy Optimization,近端策略优化)是深度强化学习中一种高效、稳定的策略优化算法,由 OpenAI 于。PPO 的关键是限制策略更新的幅度。目标是对新策略进行优化,同时控制策略与旧策略的差异,避免过大的策略更新。原创 2025-01-13 14:43:23 · 2097 阅读 · 0 评论 -
DeepMind 发布强化学习通用算法 DreamerV3,AI 成精自学捡钻石
在没有人类数据的情况下解决这一挑战,被广泛认为是人工智能的一个里程碑,因为在这个程序生成的开放世界环境 (open-world environment) 中,奖励稀少、探索困难、时间跨度长,这些障碍的存在使得先前的方法都需要基于人类数据或教程。DreamerV3 是第一个从 0 开始在「我的世界」中完全自学收集钻石的算法,它使得强化学习的应用范围进一步扩大,正如网友们所说,DreamerV3 已经是个成熟的通用算法了,该学会自己挂机升级打怪,跟终极 BOSS 末影龙对线了!原创 2025-01-13 16:31:07 · 839 阅读 · 0 评论 -
ppo在实际训练中非常动荡,怎么知道该何时停止呢
与训练环境类似但独立的验证环境(Validation Envir。更新时收集的样本数量(如从 2048 增加到 4096)ppo在实际训练中非常动荡,怎么知道该何时停止呢。滑动平均奖励曲线(如过去 100 个回合的平均值。,并选择合适的停止时机,同时改善训练动荡问题。最大训练回合数(如 10,000 个回合。onment),用来评估策略的泛化性能。在实际训练中,PPO 的学习过程可能会。KL 散度过大,增加 KL 惩罚系数。KL 散度过大,说明策略更新过快。KL 散度过小,说明策略更新不足。原创 2025-01-14 04:11:37 · 822 阅读 · 0 评论 -
麻将算法 mahjong-algorithm 关于麻将的各种算法fan-calculator-usage/ChineseOfficialMahjongHelper/Classes/mahjong-al
虽然是用C++编写的,但是代码不包含STL。它很容易在其他语言中使用。原创 2025-01-13 14:43:07 · 984 阅读 · 0 评论 -
dreamerv3/main.py 世界模型
获取当前文件所在目录的父目录。的第 0 个位置,优先级最高。的名称(当前目录名)赋值给。模块的包名,用于相对导入。(可能是一个包含欢迎信息。模块获取当前脚本文件。当前脚本文件的路径。自定义的路径操作类。原创 2025-01-13 15:01:40 · 757 阅读 · 0 评论 -
为什么强化学习里很少有预训练模型?
in Deep Reinforcement Learning》, 强化学习目前的主流趋势是策略决定样本,样本再更新策略,那么中间策略其实很容易影响最终策略的好坏。此外,我们也可以发现用了人类数据的Alphago怎么也比不上不用人类数据的Alphazero,那么这种情况下强化学习的预训练模型其实很难达到策略的天花板水平。,需要深厚的领域知识,数据获取的门槛高,需求也很窄。因此强化学习要出现广为人知的预训练模型,要找到具备广泛性且变化狭窄的任务,目前是很难找到的。量、大小、以及数据,已经形成了门槛,原创 2024-12-30 10:08:02 · 364 阅读 · 0 评论 -
论文推荐|近端策略优化算法(PPO)
SCHULMAN J, WOLSKI F, DHARIWAL P, 等. Proximal Policy Optimization Algorithms[M/OL]. arXiv, 2017[2024-04-07].)是一个较难确定的值,在不同的环境中有不同的选择。同时,为了检验算法在高维连续控制问题的表现,作者使用。一是PPO-Penalty,通过设置目标散度dtarg的方式实现惩罚项的。的强化算法,同时也是一种高效、稳定、强大的算法框架,具备为。的算法之一,相较于其他基于策略的强化学习算法,其在。原创 2024-12-30 13:23:43 · 1717 阅读 · 0 评论 -
强化学习学习之:TRPO,PPO 算法
然后第三部,也就是PPO进来的时候了,在第三步骤中,我们需要把优化好的reward模型结合LLM 进行PPO fine-tuning, 这个步骤应该说是基于一个高质量的reward模型对LLM 也就是我们的policy maker进行打分,从而强化LLM (也就是 policy的输出质量)。总之,TRPO 为策略优化提供了一个稳健的框架,通过管理每次更新期间允许策略改变的程度,帮助稳定训练过程并改善基于策略的方法在强化学习中的收敛性。- 重复收集数据和更新策略的过程,直到收敛或达到满意的性能水平。原创 2024-12-30 13:50:23 · 1082 阅读 · 0 评论 -
PPO和TRPO算法的不同
是两种基于策略梯度方法的强化学习算法。它们的目标都是改进策略更新的稳定性和效率,但它们在实现上的设计和复杂性上有所不同。PPO(Proximal Policy Optimization)和。共轭梯度方法(Conjugate Gradient Method)二次近似(Quadratic Approximation)TRPO 的简化和改进,保留了 TRPO。,被广泛用于强化学习的实际应用中。剪切(Clipping)机制。的核心思想,但通过引入简单的。限制每次策略更新的变化幅度。[1−ϵ,1+ϵ] 范围内。原创 2024-12-30 13:32:28 · 839 阅读 · 0 评论 -
强化学习(RL)算法 中的一种基于 Actor-Critic 框架 的结构 PPO
或类似的强化学习算法。训练 Actor 和 Critic 网络。衡量某状态的“价值”。学习准确的状态值函数。原创 2024-12-30 11:40:56 · 1100 阅读 · 0 评论 -
actor critic的ppo 和在大模型中应用的ppo有什么区别
PPO(Proximal Policy Optimization)在强化学习中被广泛应用于。actor critic的ppo 和在大模型中应用的ppo有什么区别。,而在大模型(如 GPT 等语言模型)中,PPO 也被用来。环境交互(如 Atari 游戏、模拟环境。语言模型本身(如 GPT),负责生成文本。与生成模型结合的场景(如强化学习用于。如语言模型)的结合,特别是在。文本生成(如 GPT 的优化)在大模型(如 GPT)中,连续的(如机械臂的关节角度。离散的(如上下左右移动)控制任务(游戏、机器人。原创 2024-12-30 13:41:39 · 1203 阅读 · 0 评论 -
具体RM,Reward Model是怎么训练的,RM在RHLF、DPO、PPO中都是相同的吗
Reinforcement Learning with Human Feedback)框架中的核心组件,主要用来。RM 的作用虽相似,但其具体使用方式取决于训练策略(RLHF 或 DPO)。在 RLHF 中,Reward Model 是核心组件,用来指。在 DPO 中,Reward Model 的作用。阶段(训练前),而在优化过程中,DPO。RM 提供的奖励值,优化语言模型的策略。虽然 RM 的训练过程类似,但在。中,其角色和使用方式有显著区别。RM 的训练过程和使用方式在。预训练的语言模型(如 GPT)原创 2024-12-25 10:55:03 · 914 阅读 · 0 评论 -
这个UCB公式里面为什么是lnN? 这样的意义是什么
在第二项 lnNni\sqrt{\frac{\ln N}{n_i}}nilnN 中,原创 2024-12-25 11:53:58 · 803 阅读 · 0 评论 -
PPO和DPO在大模型训练的区别和优劣是什么。
DPO 是一种直接优化人类偏好的新方法,提出目的是简化 RLHF 中的训练流程,避免强化学习算法(如 PPO)带来的复杂性,同时有效训练大规模语言模型以更好地满足人类偏好。在大模型训练(如 RLHF,Reinforcement Learning with Human Feedback)中,PPO 被用来对语言模型。两者在设计目标、优化方式以及适用场景上有显著区别,以下是它们的核心概念、在大模型训练中的应用,以及各自的优劣势。在强化学习(RL)和大模型训练(尤其是大规模语言模型,如 ChatGPT)中,原创 2024-12-25 10:37:21 · 855 阅读 · 0 评论 -
麻将强化学习中的ppo
是一种流行的策略优化算法,常被用于解决复杂的序列决策问题,包括像麻将这样多动作、高维度、部分可观测的环境。PPO 适合麻将的原因在于,它在策略更新时能够平衡探索与利用,同时具备较高的稳定性和性能。它的核心思想是在优化策略时,限制策略更新的幅度,从而避免策略陷入性能下降的情况。神经网络的输入是麻将的状态表示,输出是动作分布(Actor)和状态值(Critic)。PPO 的这种裁剪机制特别适合对策略敏感的任务,比如麻将。动作空间可以用离散化的方式表示,每种动作分配唯一的编码。麻将强化学习中的ppo。原创 2024-12-27 10:38:05 · 712 阅读 · 0 评论 -
DMC网络在斗地主AI中的应用
定义)方法结合了深度学习和蒙特卡洛树搜索(MCTS),旨在通过大量模拟评估行动的价值,并使用深度神经网络近似值函数和策略函数。这使得DMC能够有效处理复杂决策问题,如斗地主游戏。核心机制价值函数近似:使用深度神经网络作为价值函数的近似器,输入为当前状态和动作,输出为该状态-动作对的估值。蒙特卡洛树搜索:在每个决策点,通过MCTS选择动作,搜索树的叶节点通过神经网络进行评估,从而实现高效的决策制定。原创 2024-12-27 11:37:39 · 484 阅读 · 0 评论