大模型必知必会:构建可控语言模型:人类反馈驱动的对齐训练(DPO、CPO、KTO、ORPO算法)

人类偏好对齐训练

背景

在当前人工智能语言模型的发展中,大型语言模型(LLMs)通过在大规模文本语料上的无监督预训练,获得了对语言结构和知识的深刻理解。这一阶段训练出的模型通常被称为“base model”。尽管此类模型具备较强的文本理解和生成能力,能够在多种语言任务中表现出连贯性和一定的逻辑性,但其在实际应用中仍存在若干显著局限:

一、输出质量与伦理问题

  1. 不良内容生成
    base model 可能会生成包含偏见、虚假信息、歧视性或有害内容的文本。这种现象的根源在于训练数据本身的质量问题,而非模型设计缺陷。

  2. 难以遵循明确指令
    尽管模型能够生成语法正确、结构完整的文本,但在理解并严格遵循用户指令、任务规范或特定风格要求方面表现不佳。例如,当用户要求生成符合某种伦理准则或特定格式的内容时,模型可能无法准确执行。


二、问题成因分析

  1. 数据偏差与噪声

    • 来源广泛但缺乏筛选:预训练所使用的文本数据主要来自互联网,涵盖社交媒体、新闻、论坛、百科等多类来源。这些数据虽然丰富,但缺乏统一的质量控制和伦理审核机制,导致模型可能学习到其中的偏见和错误信息。
    • 缺乏校验机制:由于数据量庞大,难以在训练前对每条
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值