集成学习 stacking (一)

本文介绍了集成学习中的Stacking方法,通过将多个机器学习算法(如Logistic回归、SVM、BP神经网络)的预测结果整合,提高预测性能。Stacking通过训练基模型,利用其预测值作为新特征,再进行上层模型训练。文中以5折交叉验证为例,详细阐述了Stacking的工作流程,并指出该方法可应用于微博用户转发行为预测和推荐系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

           今天看了机器学习论文《基于集成学习的微博用户转发行为预测》,第一次“重视”起来起来集成学习,该方法将多个机器学习算法得出的结果按照某种规则进行整合,以获得比单个学习器更好的预测效果。因此,该论文采用基于“加权投票法”的集成学习算法预测微博用户的转发行为,对 Logistic回归、支持向量机与 BP神经网络等机器学习算法得出的用户转发行为结果进行融合,提高了预测性能。在该文结论中,提出可以采用 “学习法”中的stacking 方法,觉得推荐系统也可以采用该方法,所以对stacking进行简单的了解一下。

stacking方法:

         将训练好的所有基模型对整个训练集进行预测,第j个基模型对第i个训练样本的预测值将作为新的训练集中第i个样本的第j个特征值,最后基于新的训练集进行训练。同理,预测的过程也要先经过所有基模型的预测形成新的测试集,最后再对测试集进行预测(这种定义可以结合图二理解)

                                            图一(不知道New data 部分是做什么的)

可以通过经典的stacking过程图来加深理解:

&nb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值