在各行业加速智能化转型的进程中,OCR技术(即光学字符识别,一种将图像中文字转化为可编辑文本的AI技术,在文档处理、办公自动化、交通出行、教育、医疗、金融等领域应用广泛。)一直扮演着重要的角色。正所谓“金无足赤”,随着业务场景日益复杂与需求多样化,传统OCR的局限性也逐渐成为制约企业转型发展的瓶颈。
从技术层面看,传统 OCR 对复杂场景的适应能力及上下文语义理解极为有限。对于存在多样化表格、混排内容、背景干扰、模糊、多语言混合等情况的图像难以准确地识别、分离出字符区域 ,导致识别错误率升高。
在识别能力上,传统 OCR 还缺乏灵活性,难以应对多样化的输入。不同的行业存在不同格式的文档和图像,而传统 OCR 往往难以快速适应这些变化,需要进行大量的调优或模型定制,进一步增加了使用成本和时间成本。
当前,在AI大模型热潮下,OCR技术正迎来新一轮生产力效率变革。
在实际应用中,大模型加持的OCR可以更准确、灵活应对不同行业复杂多样的文档格式与版式,助力企业实现业务流程自动化升级,大幅提升运营效率与数据处理准确性。那么,鹅厂的多模态OCR大模型如今进展如何呢?
01、技术演进
技术演进 | 技术路线 | 解决场景 |
---|---|---|
OCR1.0 | 多阶段定制 OCR模型检测 + 识别 + 结构化 | 全文文字识别定制场景OCR 结构化提取 |
OCR2.0(DocLM-Base) | 端到端OCR 大模型 | 单一模型支持检测、识别、结构化几类预定义好的任务 |
OCR3.0(DocLM-Large) | 多模态OCR 模型 | 单一模型支持,Prompt 驱动(个性化需求)开放式任务,各类复杂场景识别、结构化提取 |
02、金融行业解决方案
金融业数字化浪潮中,海量文档的智能处理能力,已成为衡量机构效率与风控水平的关键指标。
一方面,身份证、发票等标准化文档要求极致的处理速度与准确率;另一方面,合同、理赔文档等非标文档版式各异,传统依赖模板的OCR技术泛化能力不足,导致开发与维护成本高昂,制约了业务敏捷性。
如何平衡并满足这两类场景的差异化需求,是业界面临的难题。
专用的OCR识别,涵盖身份证件、车辆证件、企业证照、财务票据等几十种卡证票据的识别,高精度OCR识别,满足企业的不同需求。
针对非标、低频的文档处理,智能文档影像OCR训练平台,可通过配置识别模型,设置识别字段,训练后即可识别所需信息,无需海量样本。
同时也可以应用大模型智能文档抽取系统,用户只需上传样本并自定义配置抽取字段,即可自动生成所需的结构化数据。以强大的泛化学习能力,提供更全面的文档处理能力和可扩展性。
更重要的是,现如今各类方案已全面适配国产信创体系,能够与主流国产芯片、服务器、操作系统及数据库深度融合,确保了智能文档处理方案在金融信创环境下的高安全性和高可靠性。
OCR大模型与专用OCR识别协同,作为新一代的数字基础设施,将为金融机构的业务创新与战略落地提供坚实支撑。