
机器学习
文章平均质量分 85
jieshenai
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
传统机器学习 基于TF_IDF的文本聚类实现
使用sklearn基于TF_IDF算法,实现把文本变成向量。再使用sklearn的kmeans聚类算法进行文本聚类。个人观点:这是比较古老的技术了,文本转向量的效果不如如今的text2vec 文本转向量好。原创 2024-03-14 10:24:18 · 705 阅读 · 0 评论 -
基于text2vec 和 fast-pytorch-kmeans 的文本聚类实现,利用GPU加速提高聚类速度
使用text2vec模型,把文本转成向量。使用text2vec训练好的模型权重进行文本编码,不重新训练word2vec模型。利用pytorch在cuda上加速聚类计算。原创 2024-03-14 09:19:18 · 2006 阅读 · 0 评论