学术合作如何影响研究人员的职业发展

这段内容主要介绍了潜在变量估计(latent variable estimation)的方法,即如何计算研究人员的潜在生产力(λ)和学术影响力(θ),并探讨了合作网络中的一些数据处理策略及其可能带来的偏差。以下是详细的中文解释:


1. 潜在变量估计方法

  • 数据来源

    • 对于每个学术网络模型和学科领域,研究使用了所有已发表的论文数据(直到某一年) 来估计潜在参数集合。
    • 数据时间范围:1975年至2017年。
  • 计算方法

    • 研究使用凸优化(convex optimization) 来估计潜在参数集。
    • 采用自助法(bootstrap)修正的伪似然估计(pseudo-likelihood estimation) 进行参数估计。
    • 每一年都进行 30 次重复采样(replications),然后取均值来确保估计的稳健性。
  • 合作网络的构建

    • 对于每一年 ( T ),合作网络是基于 1950 年至 ( T ) 年的所有论文 构建的。
    • 在每次 bootstrap 采样之前,会对合作网络进行修剪(pruning)
      • 移除所有树状子图(tree subgraphs),因为在树结构中,模型参数可能无法唯一识别(non-identifiable)。
      • 被移除的作者会被分配一个潜在变量值为 0
  • 作者的参数更新

    • 研究追踪每位作者的学术生涯:
      • 每位作者从首次出现(作为第一作者或最后作者)起,每年都会获得新的潜在参数估计,直到 2019 年。

2. 具体参数估计

  • 使用 R 语言包 CVXR 进行凸优化计算 λ 和 θ
    • 每一年(1975-2017 年),对于每个学科
      • 采用bootstrap 采样所有已发表的论文
      • 进行 30 次重复计算(replications)
      • 最终的 λ 和 θ 值取 30 次重复计算的均值

3. 合作持续时间的计算

  • 假设:
    • 如果两位作者合作发表论文,他们的合作关系实际在论文发表前 1 年开始
  • 计算公式
    t i j = Y i j lastpaper − Y i j firstpaper + 1 t_{ij} = Y_{ij}^{\text{lastpaper}} - Y_{ij}^{\text{firstpaper}} + 1 tij=YijlastpaperYijfirstpaper+1
    • 其中:
      • Y i j lastpaper Y_{ij}^{\text{lastpaper}} Yijlastpaper是两人合作的最后一篇论文的发表年份。
      • Y i j firstpaper Y_{ij}^{\text{firstpaper}} Yijfirstpaper 是他们合作的第一篇论文的发表年份。
    • 该公式计算的是两人合作的持续时间(年份)

4. 评估因修剪网络导致的偏差

  • 由于在网络中移除了树状子图,研究评估了被剔除作者的特征,以确保结果不受偏差影响

  • 对比 2017 年的合作网络

    • 保留的研究人员(retained population)
      • 女性研究人员占比 35.6%
    • 被移除的研究人员(dropped population)
      • 女性研究人员占比 31.9%
    • 结论:被移除的研究人员中,女性比例稍低。
  • 机构声望的影响

    • 保留的研究人员的机构声望得分为 5.51
    • 被移除的研究人员的机构声望得分为 3.41
    • 结论
      • 被移除的研究人员通常来自较低声望的机构

5. 研究结论

  1. 研究使用 1950-2017 年的论文数据,通过凸优化和 bootstrap 估计 λ(生产力)和 θ(学术影响力)
  2. 每一年计算 30 次重复估计,取均值,以提高估计的稳定性
  3. 合作网络中的树状子图被剔除,被剔除的作者被赋予 0 值
  4. 合作者的合作持续时间基于首次和最后一次合作论文的时间计算
  5. 评估剔除网络子图的影响,发现被剔除的研究人员更多来自低声望机构,且女性比例略低

6. 总结

  • 研究采用了严格的统计方法来估计研究人员的潜在生产力和影响力
  • 合作网络的构建经过精心处理,包括修剪树状子图,以确保参数的唯一识别。
  • 被剔除的研究人员主要来自低声望机构,且女性比例较低,表明学术合作网络中的不平等现象可能对某些群体产生影响。

这项研究通过精确的数学建模和数据处理,为理解学术合作如何影响研究人员的职业发展提供了重要的洞察。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值