一、绪论——1.2 误差的来源和分类

本文深入探讨了数值计算中误差的概念,详细介绍了模型误差、观测误差、截断误差和舍入误差四种主要误差类型,以及绝对误差和相对误差的定义与计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

误差的来源和分类

误差是描述数值计算之中近似值的近似程度
误差按来源可分为:模型误差、观测误差、截断误差、舍入误差
1.模型误差:数学模型通常是由实际问题抽象得到的,一般带有误差,这种误差称为模型误差。(这个误差一般来说是不可避免的)

2.观测误差:数学模型中的一些参数时通过观测和实验得到的,难免带有误差,这种误差称为观测误差。

注: 以上两种误差并不是数值分析的重点研究内容,因为不可避免。下面说的两种误差是数值分析需要关注和研究的。

3.截断误差: 例如进行taylor展开, l n 2 ≈ 1 − 1 2 + 1 3 − 1 4 + 1 5 ln2 \approx 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} ln2121+3141+51,只取了前5项。这里舍去后面所产生的误差R5被称为截断误差。

4.舍入误差:由于计算机只能对有限位数进行运算,在运算中像 e , 2 , 1 3 e,\sqrt{2},\frac{1}{3} e,2 ,31等都要按舍入原则保留有限位,这时产生的误差称为舍入误差或计算误差。

绝对误差和相对误差

绝对误差
  • 设 x 是精确值 x*的一个近似值,记:
    e = x ∗ − x e=x^*-x e=xx
    称 e 为近似值 x 的绝对误差,简称误差。
  • 如果 ε \varepsilon ε满足:
    ∣ e ∣ ≤ ε \vert e \vert \leq \varepsilon eε
    则称 ε \varepsilon ε为近似值 x 的绝对误差限,简称误差限。
    注1:(1)绝对误差是一个可正可负的量,且是有量纲的。(2)绝对误差是无法精确算出来的。
    注2:精确值 x ∗ x^* x,近似值 x x x,和误差限 ε \varepsilon ε之间满足:
    x − ε ≤ x ∗ ≤ x + ε x-\varepsilon \leq x^* \leq x+\varepsilon xεxx+ε
    通常记为: x ∗ = x ± ε x^*=x\pm \varepsilon x=x±ε
相对误差

相对误差:
e r = e x ∗ = x ∗ − x x ∗ e_r = \frac{e}{x^*}=\frac{x^*-x}{x^*} er=xe=xxx
由于 x ∗ x^* x未知,实际使用时常将 x 的相对误差取为:
e r = e x = x ∗ − x x e_r = \frac{e}{x}=\frac{x^*-x}{x} er=xe=xxx
ε r = ε ∣ x ∣ \varepsilon_r=\frac{\varepsilon}{\vert x\vert} εr=xε称为近似值x的相对误差限
∣ e r ∣ ≤ ε r \vert e_r \vert \leq \varepsilon_r erεr(相对误差小于等于相对误差限)
注:相对误差可正可负,但没有量纲。

例子:
设1.24是由精确值 x ∗ x^* x经过四舍五入得到的近似值,求x的绝对误差限和相对误差限。
解:
由题意得: 1.235 ≤ x ∗ ≤ 1.245 1.235\leq x^* \leq 1.245 1.235x1.245
所以:绝对误差限 ε = 0.005 \varepsilon=0.005 ε=0.005,相对误差限 ε r = 0.005 / 1.24 ≈ 0.004 \varepsilon_r=0.005/1.24\approx 0.004 εr=0.005/1.240.004


参考资料:https://www.icourse163.org/course/NEU-1002089009

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值