
集成学习
文章平均质量分 50
机器学习和优化算法
擅长机器学习,深度学习,优化算法结合和编写,可以做回归,分类,时序预测,信号分解,递归预测等内容,面包多、公众号、知乎、B站同名!需要可联系我定制! 从未和“前程算法屋”合作,谨防被骗!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Matlab 基于牛顿拉夫逊算法优化极限学习机-Adaboost(NRBO-ELM-Adaboost)分类预测
本文介绍了一个基于牛顿拉夫逊优化算法(NRBO)改进的极限学习机-Adaboost分类预测程序。该程序采用MATLAB实现,适用于二分类和多分类任务,具有以下特点:1) 采用Newton-Raphson搜索规则和陷阱避免算子优化算法;2) 提供完整的分类效果图、迭代优化图和混淆矩阵展示;3) 支持Excel格式数据集,开箱即用;4) 需要MATLAB 2018b及以上版本运行环境。程序代码注释清晰,附带测试数据集,适合初学者使用。该算法成果已发表于中科院2区SCI期刊。原创 2025-07-31 23:05:47 · 283 阅读 · 0 评论 -
[双适应度]Matlab 基于粒子算法优化BP神经网络-Adaboost(PSO-BP-Adaboost)分类预测 (加交叉验证)
摘要:该文介绍了一个基于PSO算法优化BP神经网络-Adaboost的分类预测MATLAB程序,支持二分类和多分类任务。程序特点包括:1)内置五折交叉验证(可调1-10折),有效抑制过拟合;2)PSO算法可替换为其他优化算法;3)兼容Excel数据格式,开箱即用;4)提供分类效果图、优化曲线和混淆矩阵等可视化结果。程序适用于MATLAB 2018b及以上版本,附带测试数据集和中文注释,特别适合初学者使用。原创 2025-07-31 12:49:52 · 264 阅读 · 0 评论 -
Matlab 基于极限学习机结合Bagging(ELM-Bagging)集成算法的多变量回归预测 (多输入单输出)
摘要:本文介绍了一个基于Matlab的极限学习机结合Bagging集成算法(ELM-Bagging)的多变量回归预测程序。该程序采用ELM作为弱学习器,通过Bagging进行集成,适用于多输入单输出的回归预测任务。程序已调试完成,可直接替换Excel格式的数据集使用。运行环境要求MATLAB 2018b及以上版本,提供R2、MAE、MAPE等多项评价指标,并包含大量可视化结果。代码具有清晰的中文注释,附带测试数据集,适合新手直接使用。文末提供代码获取方式。原创 2025-07-30 23:09:34 · 277 阅读 · 0 评论 -
Matlab 基于极限学习机结合Bagging(ELM-Bagging)集成算法的多变量分类预测 (多输入单输出)
摘要:Matlab基于极限学习机(ELM)和Bagging集成算法实现多变量分类预测,支持多输入单输出模式。该程序可直接运行Excel格式数据集,适用于二分类和多分类任务,要求MATLAB 2018b及以上版本。代码包含详细中文注释,运行结果可视化展示分类效果、迭代优化过程和混淆矩阵。程序已调试完毕,用户只需替换数据集即可使用,并附赠测试数据集方便新手快速上手。原创 2025-07-30 23:08:47 · 275 阅读 · 0 评论 -
Matlab 基于遗传算法优化核极限学习机-Adaboost(GA-KELM-Adaboost)分类预测 (加交叉验证)
【摘要】本文介绍了一个基于遗传算法优化核极限学习机-Adaboost(GA-KELM-Adaboost)的MATLAB分类预测程序。该程序支持二分类和多分类任务,具有交叉验证功能(1-10折可调),能有效抑制过拟合。代码已调试完成,用户只需替换Excel格式数据集即可使用。程序特点包括:中文注释清晰、运行环境要求MATLAB 2018b及以上版本、提供分类效果图/迭代优化图/混淆矩阵图等可视化结果,并附带测试数据集。支持定制其他优化算法替换遗传算法。原创 2025-07-30 23:07:45 · 219 阅读 · 0 评论 -
Matlab 基于极限学习机结合Bagging(ELM-Bagging)集成算法的多变量时序预测 (多输入单输出)
【摘要】本文介绍了一个基于MATLAB的ELM-Bagging集成算法多变量时序预测程序。该程序采用极限学习机(ELM)作为弱学习器,通过Bagging方法进行集成,可实现多输入单输出的时序预测。程序支持Excel格式数据,适用于MATLAB 2018b及以上版本,提供R2、MAE、MAPE等多种评价指标,并包含详细中文注释和测试数据集,方便用户直接替换数据使用。程序已调试完成,无需修改代码即可运行,特别适合初学者使用。原创 2025-07-30 12:57:44 · 199 阅读 · 0 评论 -
Matlab 基于遗传算法优化BP神经网络-Adaboost(GA-BP-Adaboost)分类预测 (加交叉验证)
摘要:该程序实现了基于遗传算法优化BP神经网络结合Adaboost的分类预测模型,支持二分类和多分类任务。核心特点包括:1)内置5折交叉验证抑制过拟合;2)可替换其他优化算法;3)支持Excel格式数据输入;4)提供完整可视化结果(分类效果图、迭代优化图、混淆矩阵)。程序已调试完成,兼容MATLAB 2018b及以上版本,附带测试数据集和详细中文注释,适合直接使用或作为学习参考。用户可灵活调整交叉验证折数(1-10折),并支持算法定制服务。原创 2025-07-24 23:47:47 · 264 阅读 · 0 评论 -
[原创]基于卷积神经网络-支持向量机-Adaboost(CNN-SVM-Adaboost)多特征分类预测
摘要:本文介绍了一个基于CNN-SVM-Adaboost的多特征分类预测Matlab程序。该程序将CNN-SVM作为弱学习器,通过Adaboost算法进行集成学习,可实现二分类和多分类任务。程序已调试完成,支持Excel格式数据输入,要求Matlab 2020b及以上版本运行环境。代码包含中文注释,运行结果展示分类效果图、迭代优化图和混淆矩阵图。测试数据集已随程序提供,适合初学者直接使用。程序无需修改即可运行,用户只需替换数据集即可应用。原创 2025-07-22 22:08:52 · 453 阅读 · 0 评论 -
基于LSSVM-Adaboost回归 最小二乘向量机结合Adaboost多变量回归预测 Matlab代码(多输入单输出)
本文介绍了一个基于MATLAB的CNN-SVM-Adaboost多特征分类预测模型。该模型采用卷积神经网络-支持向量机作为弱学习器,通过Adaboost算法进行集成学习。程序已调试验证,可直接替换Excel格式数据集运行,支持二分类和多分类任务。运行环境要求MATLAB 2020b及以上版本,代码包含详细中文注释。输出结果包括分类效果图、迭代优化图和混淆矩阵图,并附赠测试数据集供初学者使用。该方案适合机器学习新手快速实现多特征分类预测任务。原创 2025-07-22 22:07:39 · 163 阅读 · 0 评论 -
[原创]基于CNN-CPO-LSSVM-Adaboost的数据多特征分类预测(多输入单输出)
摘要: Matlab基于CNN-CPO-LSSVM-Adaboost的多特征分类预测模型,采用冠豪猪优化算法改进最小二乘向量机作为弱学习器,并通过Adaboost集成提升性能。该模型支持二分类和多分类任务,数据格式为Excel,程序已调试完成可直接运行。冠豪猪优化器(CPO)为2024年发表的最新成果。运行环境要求MATLAB 2020b及以上版本,代码包含中文注释,输出结果包含分类效果图、优化迭代图和混淆矩阵。模型适用于新手,并提供测试数据集。原创 2025-07-14 23:33:04 · 702 阅读 · 0 评论 -
[区间概率预测]Adaboost-ABKDE多变量回归预测 基于改进自适应核密度估计实现区间概率预测
【摘要】Adaboost-ABKDE多变量回归预测模型采用改进自适应核密度估计技术,实现高精度的区间概率预测功能。该模型提供点预测和概率预测双重输出,支持Excel数据格式直接使用。核心优势包括:1)无需修改代码即可适配新数据;2)可替换为其他机器学习模型;3)创新性地输出区间预测结果,量化预测不确定性。模型评价指标全面,含R2、MAE等传统指标及picp、pinaw等区间评估指标。程序配备完整中文注释和测试数据集,开箱即用。该方法为不确定性预测提供新思路,适用于需要评估预测风险的实际应用场景。原创 2025-07-10 22:05:19 · 156 阅读 · 0 评论 -
Matlab【独家原创】基于Adaboost+SHAP可解释性分析的回归预测 (多输入单输出)
本文介绍了一种基于Adaboost和SHAP的可解释性回归预测模型。该模型采用多输入单输出结构,利用SHAP方法对复杂机器学习模型进行特征贡献分析,实现预测精度与可解释性的平衡。代码基于MATLAB 2018b及以上版本开发,采用FO工艺数据库,包含膜面积、流速、浓度等输入特征。模型提供R2、MAE、MSE等多项评价指标,并生成丰富的可视化结果。代码注释清晰,附赠测试数据集,可直接运行并替换用户数据使用,适合新手快速上手应用。原创 2025-07-09 23:07:57 · 462 阅读 · 0 评论 -
Matlab【独家原创】基于Adaboost+SHAP可解释性分析的分类预测 (多输入单输出)
摘要:本文介绍了一个基于Adaboost算法和SHAP可解释性分析的分类预测模型。该模型支持多输入单输出的数据格式,并针对Adaboost在SHAP分析时速度慢的问题,提供了两种计算版本(正常版和提速版)。代码采用MATLAB实现(2018b及以上版本),包含完整的中文注释和测试数据集,输出结果包括分类效果图、迭代优化图和混淆矩阵图。该方案将机器学习的高精度预测与SHAP的可解释性分析相结合,为模型决策过程提供直观解释,适用于二分类和多分类任务,适合各水平的研究人员使用。原创 2025-07-09 23:06:50 · 529 阅读 · 0 评论 -
Matlab 基于BP神经网络结合Bagging(BP-Bagging)集成算法的单变量时序预测 (单输入单输出)
《BP-Bagging神经网络多变量时序预测Matlab代码》 摘要:本文介绍了一套基于BP神经网络与Bagging集成算法的多变量时序预测Matlab代码解决方案。该代码采用单输入单输出架构,将BP作为弱学习器并通过Bagging进行集成优化。程序已调试完成,用户只需替换Excel格式数据集即可直接运行。代码要求Matlab 2018b及以上版本运行环境,提供R2、MAE、MAPE等多项评价指标,并生成丰富的可视化结果图。特别包含中文注释说明和测试数据集,尤其适合初学者使用。代码质量可靠,操作简便,可实现原创 2025-07-03 23:26:53 · 130 阅读 · 0 评论 -
Matlab 基于BP神经网络结合Bagging(BP-Bagging)集成算法的多变量时序预测 (多输入单输出)
《BP-Bagging多变量时序预测Matlab代码》 摘要:该Matlab代码基于BP神经网络结合Bagging集成算法实现多变量时序预测(多输入单输出)。代码采用BP作为弱学习器,通过Bagging进行集成优化,开箱即用,只需替换Excel格式数据集即可运行。适用于MATLAB 2018b及以上版本,提供R2、MAE、MAPE等多项评价指标和丰富可视化结果。代码包含中文注释和测试数据集,特别适合科研人员和初学者使用。主要特点包括:1)即插即用设计;2)全面评估指标;3)清晰注释;4)附带示例数据。通过B原创 2025-07-03 23:25:58 · 156 阅读 · 0 评论 -
【原创】基于[并行]Transformer-BiLSTM-Adaboost的数据多变量回归预测(多输入单输出)
《基于并行Transformer-BiLSTM-Adaboost的多变量回归预测模型》 摘要:本文介绍一种MATLAB实现的集成学习模型,将并行Transformer-BiLSTM作为弱学习器,通过Adaboost算法进行多变量回归预测。该模型创新性地融合Transformer编码器挖掘特征间的复杂关系和时间序列依赖,适用于光伏、负荷等预测任务。程序已调试完备,支持Excel数据输入,提供R2、MAE等多项评价指标。代码配备中文注释和测试数据集,兼容MATLAB 2023b及以上版本,具有开箱即用的特点,特原创 2025-07-01 23:21:37 · 686 阅读 · 0 评论 -
Matlab 基于CNN-BiGRU-Attention-Adaboost的数据多变量回归预测(多输入单输出)
摘要:本文介绍了一个基于Matlab的CNN-BiGRU-Attention-Adaboost集成学习模型,用于多变量回归预测。该程序采用CNN-BiGRU-Attention作为弱学习器,通过Adaboost进行集成学习,支持多输入单输出预测。程序调试完毕,用户只需替换Excel格式的数据集即可直接运行。运行环境要求Matlab 2021b及以上版本,评价指标包括R2、MAE等多种指标,并提供可视化结果。代码注释清晰,附带测试数据集,适合初学者使用。文章最后提供了代码获取方式。原创 2025-07-01 23:20:11 · 160 阅读 · 0 评论 -
Matlab 基于CNN-BiLSTM-Attention-Adaboost的数据多变量回归预测(多输入单输出)
【摘要】Matlab实现基于CNN-BiLSTM-Attention-Adaboost的多元回归预测模型,适用于多输入单输出场景。该模型将CNN-BiLSTM-Attention作为弱学习器,通过Adaboost算法进行集成学习。程序提供完整调试代码,支持Excel数据格式,2021b及以上Matlab版本可用。模型输出包含R2、MAE等多项评价指标及丰富可视化图表。代码含中文注释,附赠测试数据集,便于直接替换使用,特别适合初学者操作。原创 2025-07-01 23:18:02 · 238 阅读 · 0 评论 -
Matlab 基于CNN-GRU-Attention-Adaboost的数据多变量回归预测(多输入单输出)
摘要: 本文介绍了一种基于Matlab的CNN-GRU-Attention-Adaboost多变量回归预测模型(多输入单输出)。该模型将CNN-GRU-Attention作为弱学习器,通过Adaboost进行集成学习。程序已调试完成,用户只需替换Excel数据集即可运行。运行环境需Matlab 2021b及以上版本,评价指标包括R2、MAE、MAPE等,并提供丰富可视化结果。代码含中文注释,适合新手使用,附带测试数据集。获取方式见文末。原创 2025-07-01 23:18:51 · 227 阅读 · 0 评论 -
【原创】基于[并行]Transformer-BiLSTM多变量回归预测(多输入单输出) Matlab
摘要:本文介绍了一个基于Transformer-BiLSTM的多变量回归预测Matlab代码,适用于多输入单输出的数据分析。代码结合Transformer编码器和双向LSTM网络,能有效挖掘多变量间的复杂关系和时间序列特征。程序已调试完成,用户可直接替换Excel数据集使用,支持R2、MAE等多项评价指标。运行环境要求Matlab 2023b及以上版本,代码包含中文注释并附带测试数据集,非常适合新手使用。文末提供了代码获取方式。原创 2025-06-30 22:40:22 · 407 阅读 · 0 评论 -
Matlab 基于CNN-LSTM-Attention-Adaboost的数据多变量回归预测(多输入单输出)
摘要:Matlab开发了基于CNN-BiLSTM-Attention-Adaboost的多变量回归预测模型,适用于多输入单输出场景。该模型将CNN-LSTM-Attention作为弱学习器,采用Adaboost集成学习。代码已调试完成,支持Excel格式数据,要求MATLAB 2021b及以上版本运行。评估指标包括R2、MAE等,提供详细中文注释和测试数据集。程序可直接替换数据使用,适合初学者。原创 2025-06-30 22:39:26 · 264 阅读 · 0 评论 -
Matlab 基于CNN-BiGRU-Adaboost的数据多变量回归预测(多输入单输出)
《基于CNN-BiGRU-Adaboost的多变量回归预测模型》 摘要:该研究提出了一种基于Matlab的集成学习预测模型,将卷积神经网络(CNN)与双向门控循环单元(BiGRU)结合作为弱学习器,并通过Adaboost算法进行集成优化。模型支持多输入单输出的数据回归预测,适用于excel格式数据集。程序经过调试可直接运行,评价指标包含R2、MAE等5种常用指标,并自动生成丰富的结果可视化图表。代码提供清晰的中文注释和测试数据集,兼容MATLAB 2021b及以上版本,具有即插即用的特性,特别适合机器学习初原创 2025-06-30 22:37:36 · 147 阅读 · 0 评论 -
Matlab 基于CNN-GRU-Adaboost的数据多变量回归预测(多输入单输出)
摘要:本文介绍了一种基于CNN-GRU-Adaboost集成学习算法的Matlab多变量回归预测程序。该程序采用CNN-GRU作为弱学习器,通过Adaboost进行集成,适用于多输入单输出预测任务。程序已调试完成,用户只需替换Excel格式的数据集即可直接运行。运行环境要求Matlab 2021b及以上版本,提供R2、MAE等多种评价指标和丰富可视化结果。代码包含详细中文注释,并附带测试数据集,特别适合新手使用。程序获取方式见文末链接。原创 2025-06-30 22:36:13 · 176 阅读 · 0 评论 -
Matlab 基于CNN-BiLSTM-Adaboost的数据多变量回归预测(多输入单输出)
【摘要】该MATLAB程序实现了一种基于CNN-BiLSTM-Adaboost混合模型的多元回归预测方法。程序采用卷积神经网络与双向LSTM作为弱学习器,通过Adaboost算法进行集成学习,适用于多输入单输出的预测任务。主要特点包括:开箱即用设计(仅需替换Excel格式数据集)、2021b及以上MATLAB环境支持、提供R2/MAE/MAPE等多项评估指标、完整中文注释及测试数据集。程序输出丰富的可视化结果,特别适合机器学习初学者直接应用于回归预测场景。原创 2025-06-30 22:35:12 · 204 阅读 · 0 评论 -
Matlab 基于CNN-LSTM-Adaboost的数据多变量回归预测(多输入单输出)
摘要:该MATLAB程序实现了基于CNN-LSTM-Adaboost的多元回归预测模型(多输入单输出)。程序采用CNN-LSTM作为弱学习器,通过Adaboost算法进行集成学习。特点包括:1) 开箱即用,只需替换Excel数据集;2) 要求MATLAB 2021b及以上版本;3) 提供R2、MAE等多项评价指标及丰富可视化;4) 含中文注释和测试数据集,适合初学者。程序已调试完成,可直接运行。原创 2025-06-30 12:42:14 · 383 阅读 · 0 评论 -
Matlab 基于极限学习机结合Adaboost(ELM-Adaboost)的数据多变量回归预测 (多输入单输出)
Matlab 基于极限学习机结合Adaboost()的数据多变量回归预测 (多输入单输出)采用ELM作为弱学习器,然后采用Adaboost进行集成学习!1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1️⃣、运行环境要求MATLAB版本为2018b及其以上2️⃣、评价指标包括:R2、MAE、MAPE、MBE、RMSE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白。原创 2025-04-25 22:52:53 · 288 阅读 · 0 评论 -
Matlab 基于黑翅鸢算法优化最小二乘向量机-Adaboost(BKA-LSSVM-Adaboost)多特征分类预测
Matlab 基于黑翅鸢算法优化最小二乘向量机-Adaboost()多特征分类预测+交叉验证将BKA-LSSVM当作弱分类器,然后采用Adaboost进行集成!1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.交叉验证默认五折,折数1-10可调!一定程度上抑制了过拟合的发生!(交叉验证在BP的优化里)3.黑翅鸢优化算法该算法是一种受黑翅鸢迁徙和捕食行为启发的元启发式优化算法。原创 2025-04-21 15:20:06 · 324 阅读 · 0 评论 -
基于LSSVM-Adaboost分类 最小二乘向量机结合Adaboost多特征分类预测(多输入单输出)
基于分类 最小二乘向量机结合Adaboost多特征分类预测 Matlab代码 (多输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1️⃣、运行环境要求MATLAB版本为2018b及其以上。2️⃣、代码中文注释清晰,质量极高3️⃣、运行结果图包括分类效果图,混淆矩阵图等,如下所示4️⃣、赠送测试数据集,可以直接运行源程序。适合新手小白。原创 2025-04-21 15:13:03 · 202 阅读 · 0 评论 -
[独家首发]基于Stacking(2基学习器)集成学习算法的数据回归预测 Matlab代码
独家首发]基于Stacking(2基学习器)集成学习算法的数据分类预测 Matlab代码程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!SVM、BPRF其中采用网格搜索对SVM的c,g寻优包含3D可视化寻优图像!1.可跟根据需求定制基学习器和元学习器!需要其他的也可以定制!2.基学习器的数量可以根据需求定义。1️⃣、运行环境要求MATLAB版本为2019b及其以上2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要。原创 2025-04-11 22:30:28 · 403 阅读 · 0 评论 -
Matlab 基于BiLSTM-Attention-Adaboost的数据多变量回归预测(多输入单输出)
Matlab 基于双向长短期记忆网络-注意力机制-Adaboost()的数据多变量回归预测(多输入单输出)采用BiLSTM-Attention作为弱学习器,然后采用Adaboost进行集成学习!1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1️⃣、运行环境要求MATLAB版本为2021b及其以上2️⃣、评价指标包括:R2、MAE、MAPE、MBE、RMSE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高4️⃣、赠送测试数据集,可以直接运行源程序。原创 2025-04-04 19:53:08 · 167 阅读 · 0 评论 -
Matlab 基于BiLSTM-Attention-Adaboost的数据多特征分类预测(多输入单输出)
Matlab 基于双向长短期记忆网络-注意力机制-Adaboost()的数据多特征分类预测(多输入单输出)采用BiLSTM-Attention作为弱学习器,然后采用Adaboost进行集成学习!1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他优化算法的也可以定制!1️⃣、运行环境要求MATLAB版本为2018b及其以上。2️⃣、代码中文注释清晰,质量极高3️⃣、运行结果图包括分类效果图,迭代优化图,混淆矩阵图等,如下所示。原创 2025-04-03 23:57:33 · 212 阅读 · 0 评论 -
Matlab 基于BiLSTM-Attention-Adaboost的数据单变量时序预测(单输入单输出)
Matlab 基于双向长短期记忆网络-注意力机制-Adaboost()的数据单变量时序预测(单输入单输出)采用BiLSTM-Attention作为弱学习器,然后采用Adaboost进行集成学习!1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1️⃣、运行环境要求MATLAB版本为2021b及其以上2️⃣、评价指标包括:R2、MAE、MAPE、MBE、RMSE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高4️⃣、赠送测试数据集,可以直接运行源程序。原创 2025-04-03 23:56:38 · 304 阅读 · 0 评论 -
[原创]基于卷积神经网络-最小二乘向量机-Adaboost(CNN-LSSVM-Adaboost)多特征分类预测
Matlab 基于卷积神经网络-最小二乘向量机-Adaboost()多特征分类预测采用CNN-LSSVM作为弱学习器,然后采用Adaboost进行集成学习!1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1️⃣、运行环境要求MATLAB版本为2020b及其以上,可实现二分类和多分类2️⃣、代码中文注释清晰,质量极高3️⃣、运行结果图包括分类效果图,迭代优化图,混淆矩阵图,如下所示4️⃣、赠送测试数据集,可以直接运行源程序。适合新手小白。原创 2025-03-28 23:53:57 · 179 阅读 · 0 评论 -
[独家首发]基于Stacking(3基学习器)集成学习算法的数据分类预测 Matlab代码
注:1️⃣、运行环境要求MATLAB版本为2018b及其以上。2️⃣、代码中文注释清晰,质量极高3️⃣、运行结果图包括分类效果图,迭代优化图,混淆矩阵图等,如下所示4️⃣、赠送测试数据集,可以直接运行源程序。适合新手小白。原创 2025-02-25 16:27:10 · 277 阅读 · 0 评论 -
Matlab 基于白鲸算法优化BP神经网络-Adaboost(BWO-BP-Adaboost)多变量回归预测+交叉验证
Matlab 基于白鲸算法优化BP神经网络-Adaboost()多变量回归预测+交叉验证程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1.交叉验证默认五折,折数1-10可调!一定程度上抑制了过拟合的发生!(交叉验证在BP的优化里)2.需要其他算法的都可以定制!需要其他的都可以定制!1️⃣、运行环境要求MATLAB版本为2019b及其以上2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高。原创 2025-02-20 23:49:33 · 249 阅读 · 0 评论 -
Matlab 基于蜣螂算法优化BP神经网络-Adaboost(DBO-BP-Adaboost)多变量回归预测+交叉验证
Matlab 基于蜣螂算法优化BP神经网络-Adaboost()多变量回归预测+交叉验证程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1.交叉验证默认五折,折数1-10可调!一定程度上抑制了过拟合的发生!(交叉验证在BP的优化里)2.需要其他算法的都可以定制!需要其他的都可以定制!1️⃣、运行环境要求MATLAB版本为2019b及其以上2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高。原创 2025-02-20 23:47:54 · 277 阅读 · 0 评论 -
基于RBMO-BP多变量回归(双隐藏层) Matlab代码(多输入单输出)
RBMO-BP回归(双隐藏层)基于红嘴蓝鹊优化器-BP神经网络多变量回归预测(多输入单输出)程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1.红嘴蓝鹊优化器Red-billed Blue Magpie Optimizer,RBMO,以红嘴蓝喜鹊的合作高效捕食行为为灵感。该成果于2024年5月发表在SCI 顶级期刊Artificiallntelligence Review(影响因子:12)目前引用量几乎没有,你先用你就是创新!表现出较强的性能。2.需要其他算法的都可以定制!原创 2025-02-20 22:17:33 · 246 阅读 · 0 评论 -
Matlab 基于白鲸算法优化BP神经网络-Adaboost(BWO-BP-Adaboost)多特征分类预测
Matlab 基于白鲸算法优化BP神经网络-Adaboost()多特征分类预测+交叉验证程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!采用BWO-BP作为弱学习器,然后采用Adaboost进行集成学习!1.交叉验证默认五折,折数1-10可调!一定程度上抑制了过拟合的发生!(交叉验证在BP的优化里)2.需要其他算法的都可以定制!需要其他的都可以定制!1️⃣、运行环境要求MATLAB版本为2018b及其以上,可实现二分类和多分类2️⃣、代码中文注释清晰,质量极高。原创 2025-02-20 00:36:45 · 300 阅读 · 0 评论 -
Matlab 基于蜣螂算法优化BP神经网络-Adaboost(DBO-BP-Adaboost)多特征分类预测
Matlab 基于蜣螂算法优化BP神经网络-Adaboost()多特征分类预测+交叉验证程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!采用DBO-BP作为弱学习器,然后采用Adaboost进行集成学习!1.交叉验证默认五折,折数1-10可调!一定程度上抑制了过拟合的发生!(交叉验证在BP的优化里)2.需要其他算法的都可以定制!需要其他的都可以定制!1️⃣、运行环境要求MATLAB版本为2018b及其以上,可实现二分类和多分类2️⃣、代码中文注释清晰,质量极高。原创 2025-02-20 00:35:23 · 308 阅读 · 0 评论 -
【独家原创】基于蜣螂算法优化BP神经网络结合Adaboost(DBO-BP-Adaboost)集成算法的单变量时序预测
【独家原创】基于蜣螂算法优化BP神经网络结合Adaboost()集成算法的单变量时序预测 (多输入单输出) Matlab采用DBO-BP作为弱学习器,然后采用Adaboost进行集成学习!1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!注:1️⃣、运行环境要求MATLAB版本为2018b及其以上。2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高4️⃣、赠送测试数据集,可以直接运行源程序。原创 2025-01-12 23:48:34 · 191 阅读 · 0 评论