
NAGAII
文章平均质量分 60
机器学习和优化算法
擅长机器学习,深度学习,优化算法结合和编写,可以做回归,分类,时序预测,信号分解,递归预测等内容,面包多、公众号、知乎、B站同名!需要可联系我定制! 从未和“前程算法屋”合作,谨防被骗!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Matlab 基于SSA-BP+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:该代码基于SSA-BP神经网络和NSGAII多目标优化算法,适用于工艺参数优化等领域。通过建立5输入4输出的代理模型,实现多目标优化(y1极大,y2-y4极小),输出Pareto解集。代码包含两个主程序(先SSA-BP回归后NSGAII优化),提供4种输出图表及5种评价指标。MATLAB2018b以上版本运行,中文注释清晰,附测试数据集。原创 2025-07-10 23:03:46 · 396 阅读 · 0 评论 -
Matlab 基于SSA-BP+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:该代码基于SSA-BP和NSGAII算法实现多目标优化,适用于工艺参数优化。通过SSA-BP建立5输入3输出的代理模型,再用NSGAII寻找Pareto最优解。代码包含两个主程序,先进行回归建模后优化,输出多种评价指标和可视化结果。MATLAB 2018b及以上版本可运行,附带测试数据集和详细中文注释,适合新手使用。代码质量高,可直接替换数据应用于实际场景。原创 2025-07-10 23:02:40 · 256 阅读 · 0 评论 -
Matlab 基于HKELM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一种基于HKELM混合核极限学习机和NSGAII多目标优化算法的代码方案,适用于工艺参数优化。该方案先通过HKELM构建5输入3输出的代理模型,再用NSGAII算法寻找最优解集。代码包含两个主程序,分别实现HKELM回归和NSGAII优化,并提供丰富的结果可视化图表(预测拟合图、误差分析图等)和评价指标(R2、MAE等)。代码要求MATLAB 2018b及以上版本,中文注释清晰,附带测试数据集,适合新手直接使用。原创 2025-07-10 23:01:45 · 268 阅读 · 0 评论 -
Matlab 基于HKELM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一种基于混合核极限学习机(HKELM)和NSGAII多目标优化算法的MATLAB代码方案,适用于工艺参数优化等领域。该方案包含两个主程序:先通过HKELM建立5输入4输出的代理模型,再用NSGAII算法寻找极值并生成Pareto解集。代码提供完整测试数据集,包含R2、MAE等多种评价指标和丰富的可视化结果,中文注释清晰,支持MATLAB 2018b及以上版本运行,特别适合新手使用。代码获取方式见文末。原创 2025-07-10 23:00:16 · 247 阅读 · 0 评论 -
Matlab 基于KELM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一个基于核极限学习机(KELM)和NSGAII多目标优化算法的代码工具,适用于工艺参数优化等场景。代码包含两个主程序:首先通过KELM建立四输出(y1-y4)与五输入(x1-x5)的代理模型,然后使用NSGAII算法进行多目标优化,寻找y1最大、y2-y4最小的Pareto最优解集。该MATLAB代码(要求2018b+)提供完整测试数据集,包含R2/MAE/MAPE等多种评价指标和丰富的可视化图表,注释清晰,适合初学者直接应用。代码获取方式详见文末。原创 2025-06-24 23:39:34 · 747 阅读 · 0 评论 -
Matlab 基于KELM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍基于KELM+NSGAII的多目标优化算法代码,适用于工艺参数优化等领域。代码通过KELM建立5输入3输出的代理模型,再使用NSGAII算法求解目标极值(y1最大,y2、y3最小)并生成Pareto解集。代码包含两个主程序(KELM回归和NSGAII优化),运行环境为MATLAB 2018b及以上,提供R2等评价指标和多种可视化图表。代码注释清晰,附带测试数据集,适合新手直接使用。获取方式见文末。原创 2025-06-24 23:38:31 · 369 阅读 · 0 评论 -
Matlab 基于ELM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一个基于极限学习机(ELM)和NSGAII多目标优化算法的MATLAB代码实现。该代码适用于工艺参数优化等场景,通过ELM构建三输出(y1,y2,y3)与五输入(x1-x5)的代理模型,再利用NSGAII算法寻找最优解集(y1极大,y2、y3极小)。代码包含两个主程序(main1和main2),提供丰富的可视化结果和评价指标(R2、MAE等)。运行环境要求MATLAB2018b及以上版本,代码注释清晰,附带测试数据集,适合新手使用。原创 2025-06-24 23:37:18 · 406 阅读 · 0 评论 -
Matlab 基于ELM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:该研究提出一种基于极限学习机(ELM)和NSGAII多目标优化算法的解决方案,适用于工艺参数优化等领域。方法包含两个阶段:首先通过ELM建立多输入(x1-x5)与多输出(y1-y4)的代理模型,然后使用NSGAII算法寻找最优解(y1极大化,y2-y4极小化)并生成对应自变量组合。代码提供完整的评估指标(R2、MAE等)和可视化结果,包含预测拟合图、误差分析等。MATLAB环境要求2018b以上版本,附带测试数据集和详细中文注释,适合初学者使用。原创 2025-06-24 23:36:07 · 210 阅读 · 0 评论 -
Matlab 基于PSO-LSSVM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:该文介绍了一种基于粒子群算法优化最小二乘向量机(PSO-LSSVM)的NSGAII多目标优化算法,适用于工艺参数优化。代码通过PSO-LSSVM建立5输入3输出代理模型,再用NSGAII寻找目标极值并获得Pareto解集。MATLAB程序包含主程序、回归分析和优化算法,提供多维度评估指标和可视化结果。代码注释清晰,附带测试数据集,支持MATLAB2018b及以上版本运行,适合科研人员直接应用于参数优化问题。文中展示了详细的代码运行结果,并提供了获取方式。原创 2025-06-23 23:38:52 · 382 阅读 · 0 评论 -
Matlab 基于GRU+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一种结合GRU神经网络和NSGAII多目标优化算法的解决方案,适用于工艺参数优化等领域。该方法首先通过GRU建立多输出代理模型,再使用NSGAII算法寻找最优解集。代码包含两个主程序(main1用于GRU回归,main2用于NSGAII优化),提供完整数据集和详细中文注释,支持MATLAB 2018b及以上版本。评估指标包括R2、MAE等多种指标,并配有丰富的可视化结果(预测拟合图、误差分析等),适合初学者直接使用。原创 2025-06-21 16:18:29 · 305 阅读 · 0 评论 -
Matlab 基于BiLSTM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一个结合BiLSTM神经网络和NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。该方案先通过BiLSTM建立输入输出代理模型,再用NSGAII算法寻找最优解集。代码包含两个主程序(回归建模和优化求解),支持多输出评估(R2、MAE等指标),提供完整测试数据和详细中文注释。运行环境要求MATLAB 2018b及以上版本,结果包含多种可视化图表,适合科研人员和初学者使用。原创 2025-06-21 16:17:27 · 233 阅读 · 0 评论 -
Matlab 基于RBF+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍一种基于RBF神经网络和NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。该方案通过RBF建立5个输入参数与3个输出目标的代理模型,再用NSGAII算法寻找y1极大、y2/y3极小的Pareto解集。代码包含两个主程序,先进行RBF回归再执行NSGAII优化,输出包含多种评估指标和可视化图表。代码要求MATLAB 2018b及以上版本,具有清晰中文注释,随附测试数据集,适合新手使用。原创 2025-06-20 23:44:29 · 180 阅读 · 0 评论 -
Matlab 基于BiGRU+NSGAII多目标优化算法的工艺参数优化【三目标】
本文介绍了一种基于BiGRU神经网络和NSGAII多目标优化算法的混合方法,适用于工艺参数优化等领域。方法首先使用双向门控循环单元建立多输入多输出的代理模型,然后通过NSGAII算法寻找三个目标的Pareto最优解(y1最大化,y2、y3最小化)。代码包含两个主程序:先运行回归模型训练,再进行多目标优化。该方法提供了R2、MAE等多项评价指标和多种可视化结果,代码注释清晰,附赠测试数据集,支持MATLAB 2018b及以上版本,适合初学者直接使用。原创 2025-06-17 23:33:13 · 353 阅读 · 0 评论 -
Matlab 基于BiGRU+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一个基于BiGRU神经网络和NSGAII多目标优化算法的MATLAB代码实现方案,适用于工艺参数优化等领域。该方案通过BiGRU构建5输入4输出的代理模型,再使用NSGAII算法寻找最优解集(Pareto前沿),实现y1最大化及其他目标最小化的多目标优化。代码包含完整的数据分析和可视化功能(预测拟合图、误差分析等),提供详细中文注释和测试数据集,支持MATLAB2018b及以上版本运行,适合科研人员直接应用于实际项目,新手也可快速上手使用。(149字)原创 2025-06-17 23:32:15 · 177 阅读 · 0 评论 -
Matlab 基于LSTM+NSGAII多目标优化算法的工艺参数优化【三目标】
介绍一种LSTM和NSGAII多目标优化算法的MATLAB代码,适用于工艺参数优化等领域。代码先通过LSTM建立输入变量(x1-x5)与输出变量(y1-y3)的代理模型,再使用NSGAII算法寻求目标函数的最优解(y1最大化,y2、y3最小化)。程序包含两个主模块:先运行LSTM回归分析,再执行NSGAII多目标优化。代码提供完整的评价指标(R2、MAE等)和可视化结果,支持中文注释,附带测试数据集,适用于MATLAB 2018b及以上版本。原创 2025-06-16 23:38:09 · 640 阅读 · 0 评论 -
Matlab 基于LSTM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一个基于LSTM神经网络和NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。代码通过LSTM构建多变量代理模型,再利用NSGAII算法寻求最优解,生成Pareto解集。方案包含两个主程序:先运行LSTM回归分析,再执行NSGAII优化。代码支持MATLAB 2018b及以上版本,提供R2、MAE等评价指标和多种可视化图表,附带测试数据集和详细中文注释,适合初学者使用。文末提供了代码获取方式。原创 2025-06-16 23:36:53 · 233 阅读 · 0 评论 -
Matlab 基于Transformer-BiGRU+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一个基于Transformer-BiGRU和NSGAII的多目标优化算法,适用于工艺参数优化等领域。代码采用Transformer编码器分析数据特征和时间序列关系,通过NSGAII寻找三目标(y1极大,y2、y3极小)的最优解集,并生成对应的自变量Pareto解集。包含两个主程序(回归模型和优化算法),提供详细中文注释和测试数据集。运行需要MATLAB 2023b及以上版本,评价指标包括R2、MAE等,并输出多种分析图表。代码质量高,适合初学者直接使用。原创 2025-06-13 21:33:51 · 399 阅读 · 0 评论 -
Matlab 基于Transformer-BiGRU+NSGAII多目标优化算法的工艺参数优化【四目标】
本文介绍了一个基于Transformer-BiGRU和NSGAII的多目标优化算法代码,适用于工艺参数优化和设计领域。代码包含两个主程序:首先通过Transformer-BiGRU建立多输出回归模型,然后使用NSGAII算法进行多目标优化求解Pareto解集。该方案采用Transformer编码器挖掘数据特征间复杂关系,可提高预测准确性。代码提供完整测试数据集,包含R2、MAE等评价指标和各种可视化图。运行需要MATLAB 2023b及以上版本,代码注释清晰,适合初学者使用。原创 2025-06-13 21:33:00 · 366 阅读 · 0 评论 -
Matlab 基于NRBO-BP+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一种基于牛顿拉夫逊算法优化的BP神经网络(NRBO-BP)结合NSGAII多目标优化算法的方法,适用于工艺参数优化等领域。该方法先通过NRBO-BP构建变量间的代理模型,再用NSGAII算法进行三目标优化(y1极大化,y2、y3极小化),最终输出Pareto解集。代码包含两个主程序,需先运行回归模型再执行优化算法,并提供详细的运行结果可视化。该方案采用MATLAB 2018b以上环境,包含完整中文注释和测试数据集,适合初学者使用。研究成果已发表于中科院2区TOP期刊。原创 2025-06-11 23:24:01 · 333 阅读 · 0 评论 -
Matlab 基于Transformer+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一种基于Transformer和NSGAII的多目标优化算法,适用于工艺参数优化等领域。该算法首先通过Transformer建立自变量与因变量的代理模型,再使用NSGAII算法求解多目标优化问题(一个目标最大化,两个目标最小化)。代码包含两个主程序:Transformer回归建模和NSGAII优化。该方法利用Transformer挖掘复杂特征关系,提高预测精度,并提供R2、MAE等多种评价指标。代码附带测试数据集,中文注释清晰,需MATLAB 2023b及以上版本运行。原创 2025-06-11 23:23:02 · 421 阅读 · 0 评论 -
Matlab 基于Transformer-GRU+NSGAII多目标优化算法的工艺参数优化【三目标】
本文介绍了一个基于Transformer-GRU和NSGAII的多目标优化算法代码,适用于工艺参数优化等领域。代码包含两个主程序:先用Transformer-GRU构建多输出回归模型,再用NSGAII进行三目标优化(y1最大化,y2、y3最小化)。该模型处理5输入3输出数据,提供包括R2、MAE等多项评估指标和可视化结果。代码要求MATLAB 2023b环境,带有详细中文注释和测试数据集,适合新手使用。运行流程清晰,先训练代理模型,再进行多目标优化获取Pareto解集。原创 2025-06-11 23:22:03 · 263 阅读 · 0 评论 -
Matlab 基于Transformer-BiLSTM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:本文介绍了一个基于Transformer-BiLSTM与NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。该方案通过Transformer-BiLSTM建立多输出回归模型,再使用NSGAII算法进行三目标优化(y1极大化,y2、y3极小化)。代码包含两个主程序,先训练代理模型再进行优化,提供完整的预测评估指标(R2、MAE等)和可视化结果。该方案支持5输入3输出数据处理,并附赠测试数据集,MATLAB2023b环境下可直接运行,代码注释清晰,适合初学者使用。原创 2025-06-11 23:21:00 · 231 阅读 · 0 评论 -
Matlab 基于Transformer-LSTM+NSGAII多目标优化算法的工艺参数优化【三目标】
摘要:该代码实现了一种基于Transformer-LSTM与NSGAII的多目标优化算法,适用于工艺参数优化等领域。通过Transformer-LSTM构建多变量代理模型后,利用NSGAII寻找三目标的极值组合(y1最大化,y2、y3最小化),并生成对应的自变量Pareto解集。代码包含两个主程序(模型训练和优化求解),提供完整测试数据集,输出包括多种评估指标和可视化图表(拟合图、误差分析等)。运行环境要求MATLAB 2023b及以上版本,代码有详细中文注释,适合科研应用。(149字)原创 2025-06-11 23:19:36 · 295 阅读 · 0 评论 -
Matlab 基于Transformer-GRU+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一个结合Transformer-GRU和NSGAII多目标优化算法的代码方案,适用于工艺参数优化等领域。该方案首先通过Transformer-GRU建立多变量代理模型,然后利用NSGAII寻找最优解集。代码包含两个主程序,分别用于回归建模和多目标优化,配套测试数据集和详细中文注释,支持MATLAB 2023b及以上版本运行。方案提供了完整的评价指标(R2、MAE等)和可视化结果,包括预测拟合图、误差分析图等,适合初学者直接应用于实际数据。原创 2025-06-11 23:18:40 · 352 阅读 · 0 评论 -
Matlab 基于Transformer-BiLSTM+NSGAII多目标优化算法的工艺参数优化【四目标】
摘要:本文介绍了一种基于Transformer-BiLSTM和NSGAII的多目标优化算法代码,适用于工艺参数优化等领域。代码通过Transformer-BiLSTM构建代理模型,结合NSGAII算法寻找最优解集,包含5个输入特征和4个输出目标。运行流程分为两个主程序,提供完整的评价指标和可视化结果。代码要求MATLAB 2023b环境,附带测试数据集和中文注释,适合初学者使用。原创 2025-06-11 23:17:33 · 433 阅读 · 0 评论 -
Matlab 基于牛顿拉夫逊算法优化BP神经网络NRBO-BP+NSGAII多目标优化算法的工艺参数优化
基于牛顿拉夫逊算法优化BP神经网络NRBO-BP+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经NRBO-BP封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集原创 2025-06-09 23:13:00 · 243 阅读 · 0 评论 -
Matlab 基于粒子群算法优化BP神经网络PSO-BP+NSGAII多目标优化算法的工艺参数优化
摘要: 本文介绍一种基于PSO-BP神经网络和NSGAII的多目标优化算法代码。该算法首先通过PSO-BP构建输入(x1-x5)与输出(y1-y4)的代理模型,再使用NSGAII寻找y1极大值及y2-y4极小值对应的Pareto解集。代码包含两个主程序:先运行PSO-BP回归,再进行NSGAII优化。运行环境需MATLAB 2018b+,提供完整测试数据集和详细中文注释,输出包括回归拟合图、误差分析图等可视化结果,评价指标全面(R2、MAE等)。代码适用于工艺参数优化等领域,适合初学者使用。原创 2025-06-09 23:11:43 · 374 阅读 · 0 评论 -
Matlab 基于遗传算法优化BP神经网络GA-BP+NSGAII多目标优化算法的工艺参数优化
基于遗传算法优化BP神经网络多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经GA-BP封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集。3、代码分别为两个主程序,先运行。原创 2025-03-20 19:17:24 · 627 阅读 · 0 评论 -
Matlab 基于牛顿拉夫逊算法优化卷积神经网络NRBO-CNN+NSGAII多目标优化算法的工艺参数优化
基于牛顿拉夫逊算法优化卷积神经网络多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:NRBO算法优化CNN的批次数、初始学习率和正则化系数。1、先经NRBO-CNN封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。原创 2025-03-19 21:55:34 · 342 阅读 · 0 评论 -
Matlab 基于Transformer结合长短期记忆神经网络+NSGAII多目标优化算法的工艺参数优化
目录1、代码简介2、代码运行结果展示3、代码获取基于Transformer结合长短期记忆神经网络Transformer-LSTM+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经Transformer-LSTM封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极原创 2025-03-19 21:54:26 · 716 阅读 · 0 评论 -
Matlab 基于Transformer+NSGAII多目标优化算法的工艺参数优化
基于Transformer+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经Transformer封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集。原创 2025-03-19 21:52:55 · 349 阅读 · 0 评论 -
Matlab 基于卷积神经网络CNN+NSGAII多目标优化算法的工艺参数优化
基于卷积神经网络CNN+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经CNN封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集。3、代码分别为两个主程序,先运行。原创 2025-03-19 21:51:41 · 213 阅读 · 0 评论 -
Matlab 基于最小二乘向量机LSSVM+NSGAII多目标优化算法的工艺参数优化
基于最小二乘向量机LSSVM+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经LSSVM封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集。原创 2025-03-19 21:49:35 · 210 阅读 · 0 评论 -
Matlab 基于径向基神经网络RBF+NSGAII多目标优化算法的工艺参数优化
基于径向基神经网络RBF+NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经RBF封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集。3、代码分别为两个主程序,先运行。原创 2025-03-19 21:47:32 · 339 阅读 · 0 评论 -
Matlab 基于BP神经网络+NSGAII多目标优化算法的工艺参数优化
基于BP神经网络(BP)的NSGAII多目标优化算法,可适用于工艺参数优化、设计等方向。代码简介:1、先经BP封装因变量(y1,y2,y3,y4)与自变量(x1,x2,x3,x4,x5)的代理模型,再通过NSGAII寻找y的极值(y1极大;y2、y3、y4极小),并生成对应的x1,x2,x3,x4,x5Pareto解集。2、数据集有5个输入特征,4个输出,通过NSGAII寻求极值,并得到在极值时(y1max,y2min,y3min,y4min)对应的自变量的解集。3、代码分别为两个主程序,先运行。原创 2025-03-19 21:46:09 · 197 阅读 · 0 评论