- 博客(20)
- 资源 (6)
- 收藏
- 关注
原创 L1G1000 书生大模型全链路开源体系 作业笔记
书生支持100万token上下文。模型微调工具:XTurner。书生模型与同类产品横向比较。全链路部署LMDeploy。智能体MindSearch。预训练InternEvo。书生模型全链路开源生态。
2024-11-22 23:31:00
167
原创 L0G2000闯关作业:Python
'```json\n{\n "model_name": "书生浦语InternLM2.5",\n "development_institution": "上海人工智能实验室",\n "parameter_versions": [1.8B, 7B, 20B],\n "context_length": 1M\n}\n```'本段demo为了方便大家使用debug所以将api_key明文写在代码中,这是一种极其不可取的行为!作业提交时需要有debug过程的图文笔记,以及修改过后的代码。
2024-11-13 23:51:07
444
原创 L0G1000:Linux+InternStudio 闯关作业
首先,打开界面,点击 创建开发机 配置开发机系统。填写开发机名称后,点击 选择镜像 使用镜像,然后在资源配置中,使用的选项,然后立即创建开发机器。点击进入开发机选项。
2024-11-03 22:14:15
683
原创 L2-MindSearch CPU-only 版部署-任务
和相比区别是把internstudio换成了github codespace。随着硅基流动提供了免费的 InternLM2.5-7B-Chat 服务(免费的 InternLM2.5-7B-Chat 真的很香),MindSearch 的部署与使用也就迎来了纯 CPU 版本,进一步降低了部署门槛。那就让我们来一起看看如何使用硅基流动的 API 来部署 MindSearch 吧。
2024-08-31 20:18:56
1125
原创 L2-茴香豆:企业级知识库问答工具-任务
在第一部分中,我们利用 Web 版茴香豆实现了零代码开发部署一款 RAG 知识助手,在接下来的部分,我们要动手尝试将茴香豆从源码部署到本地服务器(以 InternlmStudio 为例),并开发一款简单的知识助手 Demo。
2024-08-31 00:25:39
1005
原创 L2-InternVL 多模态模型部署微调实践-任务
InternVL 是一种用于多模态任务的深度学习模型,旨在处理和理解多种类型的数据输入,如图像和文本。它结合了视觉和语言模型,能够执行复杂的跨模态任务,比如图文匹配、图像描述生成等。通过整合视觉特征和语言信息,InternVL 可以在多模态领域取得更好的表现。
2024-08-29 11:10:24
1044
原创 L2-LMDeploy 量化部署进阶实践-任务
本次实践选用InternVL2-26B进行演示,其实就根本来说作为一款VLM和上述的InternLM2.5在操作上并无本质区别,仅是多出了"图片输入"这一额外步骤,但作为量化部署进阶实践,选用InternVL2-26B目的是带领大家体验一下LMDeploy的量化部署可以做到何种程度。在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。在上一章节,我们直接在本地部署InternLM2.5。
2024-08-22 18:02:34
1000
原创 L2-Lagent 自定义你的 Agent 智能体-任务
Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。Arxiv 搜索Bing 地图Google 学术搜索Google 搜索交互式 IPython 解释器IPython 解释器PPTPython 解释器在本节中,我们将带大家基于 Lagent 自定义自己的智能体。Lagent 中关于工具部分的介绍文档位于动作 — Lagent。继承BaseAction类实现简单工具的run方法;
2024-08-20 22:53:00
695
原创 L1-OpenCompass 评测 InternLM-1.8B 实践-任务
确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。有部分第三方功能,如代码能力基准测试 HumanEval 以及 Llama 格式的模型评测,可能需要额外步骤才能正常运行,如需评测,详细步骤请参考安装指南。将会在 OpenCompass 下看到data文件夹。
2024-08-11 00:57:55
904
原创 L1-XTuner 微调个人小助手认知-任务
我们想要用简单易上手的微调工具包 XTuner 来对模型进行微调的话,第一步是安装 XTuner!安装基础的工具是一切的前提,只有安装了 XTuner 我们才能够去执行后续的操作。:在完成 XTuner 的安装后,我们下一步就需要去明确我们自己的微调目标了。我们想要利用微调做一些什么事情呢,然后为了实现这个目标,我们需要准备相关的硬件资源和数据。:在确定了自己的微调目标后,我们就可以在 XTuner 的配置库中找到合适的配置文件并进行对应的修改。修改完成后即可一键启动训练!
2024-08-09 22:32:20
1117
原创 L1-浦语提示词工程实践-作业
Prompt是一种用于指导以大语言模型为代表的生成式人工智能生成内容(文本、图像、视频等)的输入方式。它通常是一个简短的文本或问题,用于描述任务和要求。Prompt可以包含一些特定的关键词或短语,用于引导模型生成符合特定主题或风格的内容。例如,如果我们要生成一篇关于“人工智能”的文章,我们可以使用“人工智能”作为Prompt,让模型生成一篇关于人工智能的介绍、应用、发展等方面的文章。Prompt还可以包含一些特定的指令或要求,用于控制生成文本的语气、风格、长度等方面。
2024-08-09 12:24:28
1136
原创 大模型实战营 Linux+InternStudio 关卡任务
首先,打开界面,点击 创建开发机 配置开发机系统。填写开发机名称后,点击 选择镜像 使用镜像,然后在资源配置中,使用的选项,然后立即创建开发机器。点击进入开发机选项。
2024-07-11 14:50:15
489
原创 L1G4000 任务InternLM + LlamaIndex RAG 实践
一、启动开发机启动30% A100机器。进入开发机后,从官方环境复制运行 InternLM 的基础环境,命名为llamaindex复制完成后,在本地查看环境。结果如下所示。运行conda命令,激活llamaindex。
2024-07-10 23:49:23
556
原创 书生·浦语大模型实战训练营课程笔记:第一课
模型自定义回复风格;有想象力的创作,可以创作剧本;工具调用能力,可以调用代码,计算,完成复杂任务。模型选型-业务场景评估-算力评估-训练微调-调整环境交互-构建智能体-模型部署。预训练模型使使用便捷、可扩展、兼容主流。internLM2性能处于中等靠前。7B轻便便宜,20B中量型模型。智能客服、个人助手、行业应用。部署支持多种主流接口。
2024-06-17 00:03:55
182
Spring 动态模型(Spring Dynamic Modules)参考指南
2011-12-09
spring-flex-1.5.2.RELEASE
2013-08-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人