一、启动开发机
启动30% A100机器。
进入开发机后,从官方环境复制运行 InternLM 的基础环境,命名为 llamaindex
,在命令行模式下运行:
studio-conda -t llamaindex -o pytorch-2.1.2
复制完成后,在本地查看环境。
conda env list
结果如下所示。
# conda environments:
#
base * /root/.conda
llamaindex /root/.conda/envs/llamaindex
运行 conda
命令,激活 llamaindex
python 虚拟环境:
conda activate llamaindex
-
安装 Llamaindex
安装 Llamaindex和相关的包
conda activate llamaindex
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0
安装成功:
2.下载 Sentence Transformer 模型
源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型)
运行以下指令,新建一个python文件
cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py
打开download_hf.py
贴入以下代码
import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
然后,在 /root/data
目录下执行该脚本即可自动开始下载:
conda activate llamaindex
python download_hf.py
更多关于镜像使用可以移步至 HF Mirror 查看。
3.下载 NLTK 相关资源
我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk
的一些资源。正常情况下,其会自动从互联网上下载,但可能由于网络原因会导致下载中断,此处我们可以从国内仓库镜像地址下载相关资源,保存到服务器上。
我们用以下命令下载 nltk 资源并解压到服务器上:
cd /root git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages cd nltk_data mv packages/* ./ cd tokenizers unzip punkt.zip cd ../taggers unzip averaged_perceptron_tagger.zip
之后使用时服务器即会自动使用已有资源,无需再次下载。
4.LlamaIndex HuggingFaceLLM
运行以下指令,把 InternLM2 1.8B 软连接出来
cd ~/model ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./
运行以下指令,新建一个python文件
cd ~/llamaindex_demo touch llamaindex_internlm.py
打开llamaindex_internlm.py
贴入以下代码
from llama_index.llms.huggingface import HuggingFaceLLM from llama_index.core.llms import ChatMessage llm = HuggingFaceLLM( model_name="/root/model/internlm2-chat-1_8b", tokenizer_name="/root/model/internlm2-chat-1_8b", model_kwargs={"trust_remote_code":True}, tokenizer_kwargs={"trust_remote_code":True} ) rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")]) print(rsp)
之后运行
conda activate llamaindex cd ~/llamaindex_demo/ python llamaindex_internlm.py
结果为:
5.LlamaIndex RAG
安装 LlamaIndex 词嵌入向量依赖
conda activate llamaindex pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor
运行以下命令,获取知识库
cd ~/llamaindex_demo mkdir data cd data git clone https://github.com/InternLM/xtuner.git mv xtuner/README_zh-CN.md ./
运行以下指令,新建一个python文件
cd ~/llamaindex_demo
touch llamaindex_RAG.py
打开llamaindex_RAG.py
贴入以下代码
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
embed_model = HuggingFaceEmbedding( model_name="/root/model/sentence-transformer" )
Settings.embed_model = embed_model
llm = HuggingFaceLLM( model_name="/root/model/internlm2-chat-1_8b", tokenizer_name="/root/model/internlm2-chat-1_8b", model_kwargs={"trust_remote_code":True}, tokenizer_kwargs={"trust_remote_code":True} )
Settings.llm = llm documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")
print(response)
之后运行
conda activate llamaindex cd ~/llamaindex_demo/ python llamaindex_RAG.py
结果为:
任务
提问
xtuner是什么?
xtuner支持哪些模型?
结果: