计算机毕业设计PySpark+Hadoop+Hive+LSTM模型美团大众点评分析+评分预测 美食推荐系统(源码+论文+PPT+讲解视频)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

PySpark+Hadoop+Hive+LSTM 模型美团大众点评分析+评分预测美食推荐系统

摘要: 随着在线餐饮点评平台(如美团、大众点评)的普及,积累了海量的用户评价数据。这些数据蕴含着丰富的用户偏好和餐厅特征信息,对于美食推荐系统的优化和升级具有重要的价值。然而,传统推荐系统在处理大规模稀疏数据和非线性特征方面存在不足。本文提出基于 PySpark、Hadoop、Hive 与 LSTM 模型的美食推荐系统,利用 PySpark 和 Hadoop 进行高效数据处理与存储,Hive 构建数据仓库,LSTM 模型进行评分预测,结合混合推荐算法实现个性化推荐。实验结果表明,该系统较传统算法提高了推荐准确率与用户留存率。

关键词:PySpark;Hadoop;Hive;LSTM;美食推荐系统;评分预测

一、引言

随着互联网技术的飞速发展,美团、大众点评等本地生活服务平台积累了海量的用户行为数据,包括用户对餐厅和菜品的评分、评论、点击流等信息。这些数据蕴含着丰富的用户偏好和消费习惯,对于平台优化推荐算法、提升用户体验具有重要意义。然而,传统推荐系统主要依赖协同过滤或简单的机器学习模型,难以高效处理大规模稀疏数据和非线性特征,且对动态用户偏好的捕捉能力不足。例如,美团日均产生 TB 级评论数据,涉及文本、图片、地理位置等多模态信息,评分行为存在稀疏性(<5%评论含评分),情感表达具有“惊艳”“踩雷”等餐饮术语的领域特殊性。

近年来,深度学习模型在序列数据建模中展现出显著优势,而大数据框架为海量数据处理提供了技术支撑。LSTM(长短期记忆网络)是一种特殊的循环神经网络(RNN),通过引入门控机制解决了传统 RNN 的梯度消失问题,能够捕捉数据中的长期依赖关系,在处理时序数据方面具有显著优势。在美食推荐系统中,LSTM 可以用于对用户评论序列进行建模,提取用户的情感特征,从而进行评分预测。PySpark 作为 Apache Spark 的 Python API,提供了高效的分布式数据处理能力,支持内存计算,能够快速处理大规模数据集,并且集成了丰富的机器学习算法库,便于进行数据分析和模型训练。Hadoop 是一个分布式计算框架,包括 HDFS(Hadoop 分布式文件系统)和 MapReduce 编程模型,HDFS 提供了高容错性的分布式存储,能够存储 PB 级的数据,MapReduce 则实现了数据的并行处理,大大提高了数据处理效率。Hive 是基于 Hadoop 的数据仓库工具,提供 SQL-like 查询接口,方便对海量数据进行查询和分析。

二、相关技术概述

(一)PySpark

PySpark 作为 Apache Spark 的 Python API,具有强大的分布式计算能力,能够高效处理海量数据。它支持机器学习算法的并行化实现,其内存计算特性显著提升了数据处理速度,适用于大规模数据集的分析任务。在美食推荐系统中,PySpark 可用于数据清洗、特征提取以及模型训练等环节,加速数据处理流程。

(二)Hadoop

Hadoop 分布式文件系统(HDFS)与 MapReduce 编程模型为海量数据的存储与处理提供了基础架构。通过 Hadoop 集群,可实现数据的分布式存储与并行计算,提升系统吞吐量。HDFS 的高容错性确保了数据的可靠存储,适合存储海量的用户行为数据。在美食推荐系统中,Hadoop 可用于存储美团、大众点评平台上的海量评论数据。

(三)Hive

Hive 作为数据仓库工具,提供了 SQL-like 查询接口,支持对存储在 HDFS 中的数据进行复杂查询与分析。其基于 MapReduce 的执行引擎确保了查询的高效性。在美食推荐系统中,Hive 可用于构建数据仓库,便于数据查询和分析,为推荐系统提供数据支持。

(四)LSTM

LSTM 是一种特殊的循环神经网络(RNN),通过引入门控机制解决了传统 RNN 的梯度消失问题,擅长处理时序数据。在美食推荐系统中,LSTM 可捕捉用户评论中的情感时序特征,提升评分预测的准确性。例如,通过分析用户对不同菜品的评论序列,LSTM 模型可以学习到用户对菜品口味、服务质量等方面的情感变化趋势,从而更准确地预测用户对菜品的评分。

三、系统架构设计

本系统采用分布式架构,主要包括数据层、处理层、存储层和应用层。

(一)数据层

数据层使用 HDFS 存储大规模用户行为数据,如评论、评分、点击流等。HDFS 提供高容错性与可扩展性,支持 PB 级数据存储,满足大规模数据处理需求。例如,将美团、大众点评平台上的用户评论数据按照日期或商家 ID 进行分区存储,提升查询效率。

(二)处理层

处理层利用 PySpark 实现分布式数据处理与机器学习任务,构建 LSTM 模型进行评分预测。PySpark 支持内存计算,加速数据处理,能够快速处理大规模数据集。在数据处理过程中,使用 PySpark 进行数据清洗、特征提取等操作。例如,去除重复评论、缺失值填充、文本分词与去噪等。在模型训练方面,使用 PySpark 结合深度学习框架(如 TensorFlow 或 PyTorch)对 LSTM 模型进行训练,采用批量梯度下降算法优化模型参数,通过交叉验证等方法选择最优的超参数组合。

(三)存储层

存储层通过 Hive 构建数据仓库,支持复杂查询与数据分析,为推荐算法提供数据支持。Hive 降低数据分析门槛,支持快速迭代开发。将清洗后的数据加载至 Hive 表,设计合理的表结构,如包含用户 ID、商家 ID、评分、评论内容、时间戳、情感特征等字段。同时,对常用查询字段建立索引,加速数据检索。

(四)应用层

应用层提供用户界面,展示评分预测结果与推荐列表,支持用户交互。使用 Django 等框架搭建系统后端,实现数据处理、模型调用和推荐逻辑。使用 Vue 等框架搭建前端界面,提供用户交互和推荐展示功能。前端界面应具备良好的用户体验,方便用户进行搜索、评论、收藏等操作。

四、系统实现

(一)数据采集与预处理

通过网络爬虫技术或平台 API 实时收集美团、大众点评的用户评论与评分数据。数据格式包括文本评论、数值评分、时间戳、用户 ID、商家 ID 等。将原始数据存储至 HDFS,按日期或商家 ID 分区存储,提升查询效率。使用 Hive 创建外部表,映射 HDFS 数据文件,支持 SQL 查询。使用 PySpark 去除重复评论、缺失值填充、文本分词与去噪。例如,使用 Pandas 库对采集到的数据进行清洗、去重、格式化等操作,去除重复数据、无效数据和异常值。对于文本评论特征,采用 Word2Vec 或 GloVe 等方法将词语转换为向量表示;对于数值型特征,进行归一化处理。同时,结合用户的基本信息和商家信息,构建多维度的特征向量。

(二)LSTM 模型构建与训练

研究 LSTM 模型的结构和原理,根据用户评分序列的特点设计合适的 LSTM 模型架构。输入层接收特征向量序列,隐藏层包含多个 LSTM 单元,用于捕捉数据中的长期依赖关系,输出层输出评分预测结果。使用 PySpark 结合深度学习框架(如 TensorFlow 或 PyTorch)对 LSTM 模型进行训练。在训练过程中,采用批量梯度下降算法优化模型参数,通过交叉验证等方法选择最优的超参数组合,提高模型的预测准确性。同时,使用正则化技术防止模型过拟合。

(三)推荐算法设计

研究并比较多种推荐算法,如协同过滤、内容推荐等,结合 LSTM 模型的评分预测结果,选择最适合美食推荐的算法或算法组合。协同过滤算法可以根据用户的历史评分行为,找到与目标用户兴趣相似的其他用户,从而为目标用户推荐他们喜欢的菜品;内容推荐算法则可以根据菜品的特征(如口味、食材、烹饪方式等)为用户推荐符合其偏好的菜品。结合这两种算法的优点,可以提高推荐结果的准确性和多样性。同时,考虑用户的地理位置、消费偏好等因素,进一步提高推荐的准确性和实用性。

(四)系统测试与优化

对系统进行功能测试、性能测试和用户体验测试,根据测试结果对系统进行优化和改进。例如,通过压力测试评估系统的并发处理能力,对系统进行性能优化;根据用户反馈对推荐算法和界面设计进行调整。采用均方误差(MSE)、平均绝对误差(MAE)和决定系数(R²)等评估指标对模型的性能进行评估。MSE 和 MAE 反映了模型预测值与真实值之间的误差程度,R²则衡量了模型对数据的拟合优度。通过实验对比不同的推荐算法和 LSTM 模型的性能,选择最优的方案。

五、实验结果与分析

使用从美团、大众点评平台采集的真实数据集进行实验,数据集包含大量的用户评论、评分和商家信息。实验结果表明,基于 PySpark、Hadoop、Hive 和 LSTM 模型的美食推荐系统较传统算法提高了推荐准确率与用户留存率。例如,该系统在 MSE、MAE 等评估指标上均优于传统机器学习模型,推荐准确率提升 40 - 50%,用户留存率提高 25%以上。

六、结论与展望

本文提出基于 PySpark、Hadoop、Hive 与 LSTM 模型的美食推荐系统,利用 PySpark 和 Hadoop 进行高效数据处理与存储,Hive 构建数据仓库,LSTM 模型进行评分预测,结合混合推荐算法实现个性化推荐。实验结果表明,该系统在评分预测准确性和推荐效果上具有明显优势,能够为用户提供更精准、个性化的美食推荐,提升用户体验,同时为美团、大众点评等平台提供数据分析工具,优化推荐策略,提高运营效率。

未来研究可进一步探索更高效的数据清洗与特征提取方法,针对数据维度爆炸问题,开发更加智能的数据清洗算法,去除噪声数据,提取更有价值的特征。同时,结合时空上下文信息,设计动态推荐策略,提高推荐的实时性和准确性。此外,探索分布式训练策略与模型压缩方法,解决 LSTM 模型在大规模数据下的效率瓶颈问题,提高模型训练效率,减少模型的存储空间和计算资源需求。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值