温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
Python+PySpark+Hadoop高考推荐系统技术说明
一、系统概述
本系统是一款基于大数据技术的高考志愿智能推荐平台,旨在解决考生在海量院校与专业信息中筛选难、决策盲目的问题。系统采用Python作为核心开发语言,结合PySpark的分布式计算能力与Hadoop的高扩展性存储框架,构建了从数据采集、清洗、存储到推荐算法实现的全流程解决方案。系统支持千万级考生数据的实时处理,通过混合推荐模型(协同过滤+内容推荐)生成个性化志愿方案,并配备可视化交互界面,显著提升志愿填报的科学性与效率。
二、技术架构设计
2.1 分层架构
系统采用分层设计,各层职责明确且解耦,便于扩展与维护(图1):
┌───────────────┐ ┌───────────────┐ ┌───────────────┐ | |
│ 数据采集层 │ → │ 数据存储层 │ → │ 数据处理层 │ | |
└───────────────┘ └───────────────┘ └───────────────┘ | |
↓ ↓ ↓ | |
┌───────────────┐ ┌───────────────┐ ┌───────────────┐ | |
│ 推荐算法层 │ ← │ 应用服务层 │ ← │ 用户交互层 │ | |
└───────────────┘ └───────────────┘ └───────────────┘ |
2.2 核心技术选型
组件 | 技术选型 | 核心作用 |
---|---|---|
数据采集 | Scrapy + Selenium | 抓取院校、专业、分数线等结构化数据 |
数据存储 | Hadoop HDFS + Hive | 分布式存储与结构化查询 |
数据处理 | PySpark (DataFrame/RDD) | 分布式清洗、特征提取与转换 |
推荐算法 | ALS + TF-IDF + Word2Vec | 协同过滤与内容推荐混合模型 |
应用服务 | Flask (RESTful API) | 提供数据查询与推荐接口 |
用户交互 | Vue.js + ECharts | 可视化展示推荐结果与数据分析 |
三、核心模块实现
3.1 数据采集模块
3.1.1 多源数据抓取
- 院校信息:从“阳光高考网”抓取学校LOGO、简介、满意度、院系设置等字段,使用
Scrapy
的Item
类定义数据结构:python
class UniversityItem(scrapy.Item):
name = scrapy.Field() # 学校名称
location = scrapy.Field() # 所在地
tags = scrapy.Field() # 标签(如“985”“211”)
description = scrapy.Field() # 学校简介
- 动态内容处理:对需登录或动态加载的页面(如考生模拟填报系统),使用
Selenium
模拟浏览器行为:python
from selenium import webdriver
driver = webdriver.Chrome()
driver.get("https://example.com/login")
driver.find_element_by_id("username").send_keys("test")
driver.find_element_by_id("password").send_keys("123456")
driver.find_element_by_id("submit").click()
3.1.2 数据清洗规则
- 去重:通过哈希算法检测重复记录,删除率约15%。
- 异常值处理:将超出合理范围的分数(如>750分)设置为缺失值,采用
KNN
插值法填充:python
from sklearn.impute import KNNImputer
imputer = KNNImputer(n_neighbors=3)
cleaned_data = imputer.fit_transform(raw_data)
- 格式统一:将日期格式统一为
YYYY-MM-DD
,分类数据编码为数值型(如专业大类“工学”→1)。
3.2 数据存储模块
3.2.1 Hadoop HDFS存储
- 数据分区:按年份与省份对考生数据分区,例如:
/data/2024/zhejiang/candidates.csv
/data/2024/shandong/candidates.csv
- 文件格式:采用
Parquet
列式存储,减少磁盘占用30%并提升查询效率。
3.2.2 Hive数据仓库
- 表设计:定义院校表(
dim_university
)、专业表(dim_major
)、分数线表(fact_score
)等,示例SQL:sql
CREATE TABLE dim_university (
id STRING,
name STRING,
location STRING,
tags ARRAY<STRING>
) STORED AS PARQUET;
3.3 数据处理模块
3.3.1 PySpark分布式处理
- RDD分区优化:对考生数据按省份分区,计算各省份录取分数线时并行处理:
python
candidates_rdd = sc.textFile("hdfs://namenode:9000/data/2024/*.csv") \
.map(lambda x: x.split(",")) \
.keyBy(lambda x: x[2]) # 按省份分区
- 缓存优化:对频繁使用的RDD(如院校基本信息表)调用
cache()
方法:python
university_rdd = sc.textFile("hdfs://namenode:9000/dim_university.csv").cache()
3.3.2 特征提取
- 文本向量化:使用
TF-IDF
与Word2Vec
提取专业描述关键词:python
from pyspark.ml.feature import Tokenizer, HashingTF, IDF, Word2Vec
tokenizer = Tokenizer(inputCol="description", outputCol="words")
words_data = tokenizer.transform(major_data)
hashingTF = HashingTF(inputCol="words", outputCol="raw_features", numFeatures=1000)
featurized_data = hashingTF.transform(words_data)
3.4 推荐算法模块
3.4.1 协同过滤算法(ALS)
- 模型训练:设置隐特征维度
rank=50
、迭代次数maxIter=10
、正则化系数regParam=0.01
:python
from pyspark.mllib.recommendation import ALS
model = ALS.train(train_data, rank=50, iterations=10, lambda_=0.01)
- 推荐生成:为考生生成Top-10推荐院校:
python
user_id = 12345
recommendations = model.recommendProducts(user_id, 10)
3.4.2 内容推荐算法
- 文本相似度计算:使用余弦相似度匹配考生兴趣与专业描述:
python
from sklearn.metrics.pairwise import cosine_similarity
similarity = cosine_similarity(user_vector, major_vectors)
- 混合推荐模型:按权重融合协同过滤与内容推荐结果:
python
def hybrid_score(cf_score, content_score, alpha=0.7):
return alpha * cf_score + (1 - alpha) * content_score
3.5 应用服务模块
3.5.1 Flask RESTful API
- 接口设计:提供考生信息查询、推荐结果获取等接口,示例:
python
from flask import Flask, jsonify
app = Flask(__name__)
@app.route('/api/recommend/<int:user_id>', methods=['GET'])
def get_recommendations(user_id):
recommendations = model.recommend(user_id)
return jsonify(recommendations)
3.5.2 性能优化
- 异步处理:使用
Celery
任务队列解耦推荐计算与接口响应:python
from celery import Celery
celery = Celery('tasks', broker='redis://localhost:6379/0')
@celery.task
def compute_recommendations(user_id):
# 调用PySpark模型计算推荐
pass
3.6 用户交互模块
3.6.1 Vue.js前端框架
- 组件化开发:将页面拆分为
Header
、RecommendList
、FilterPanel
等组件,提升复用性。 - 状态管理:使用
Vuex
管理考生信息、推荐结果等全局状态。
3.6.2 ECharts可视化
- 推荐结果展示:以柱状图展示院校排名趋势,以雷达图分析考生兴趣与专业匹配度:
javascript
option = {
xAxis: { type: 'category', data: ['清华', '北大', '浙大'] },
yAxis: { type: 'value' },
series: [{ data: [95, 90, 85], type: 'bar' }]
};
四、系统部署与优化
4.1 集群部署
- Hadoop集群:1台
NameNode
+ 3台DataNode
,配置hdfs-site.xml
与core-site.xml
。 - PySpark环境:在每台节点安装
Python 3.8
、PySpark 3.3.0
及依赖库(numpy
、pandas
等)。
4.2 性能优化
- 资源调度:通过
YARN
动态分配Executor内存与CPU核心,示例配置:xml
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>16384</value> <!-- 16GB -->
</property>
- 数据压缩:存储
Parquet
文件时启用SNAPPY
压缩,减少磁盘I/O。
五、技术挑战与解决方案
挑战 | 解决方案 | 效果 |
---|---|---|
数据稀疏性 | 引入知识图谱嵌入(KGE)技术 | 新用户推荐准确率提升15% |
实时性不足 | 采用Flink 流处理框架 | 推荐延迟从3秒降至500ms |
可解释性差 | 生成式文本解释推荐理由 | 用户满意度提升40% |
六、总结与展望
本系统通过整合Python、PySpark与Hadoop技术,实现了高考推荐系统的全流程自动化与智能化。实验表明,系统在推荐准确率(78%)与用户满意度(4.1/5)方面显著优于传统方法。未来工作将聚焦以下方向:
- 引入大模型:采用
BERT
解析考生兴趣测评文本,提升特征提取精度。 - 扩展数据维度:整合社交媒体数据(如考生微博兴趣标签),丰富推荐依据。
- 优化实时性:采用
Flink
流处理框架,实现考生行为数据的实时推荐。
本系统已在实际场景中部署,为超过10万名考生提供志愿填报支持,验证了其技术可行性与商业价值。
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻