最短路径:对应不带权图则表示起始点到目标点的所用的最少边数的路径;对应带权图则表示起始点到目标点的权值之和最小的路径。
Floyd算法核心思想:动态规划思想,利用中间点k来求它的最短路径,它的状态转移方程为:dp[i][j]=min{dp[i][j],dp[i][k]+dp[k][j]}; dp[i][j]为目前已知的i->j的最短路径。
例如,更新0->2的最短路径,已知0->2目前最短路径为6
我们遍历到1为中间点的时候,发现0->1->2的路径值为5<6,则我们更新0->2的最短路径为5,且1->2的前驱结点为0。
所以,给出应该带权有向图
首先定义各点到各点的最短路径的二维数组arr,和路径二维数组path
int arr[7][7]; //用于存放各个点到其他的点的最短长度
int path[7][7]; //用于存放最短路径
接着初始化这两个数组,arr数组初始化为连通图的值,也就是各点到其他点的直接权值,
如果各点到其他的点有边这设置 i->j 的前驱结点为 i ,否则为-1
for (int i = 0;i < 7;i++) {
for (int j = 0;j < 7;j++) {
arr[i][j] = g[i][j]; //初始最短距离为邻接矩阵的直接权值(未经过中间节点)
if (g[i][j] != 0 && g[i][j] < INF) { //存放路径
path[i][j] = i; //若i-j有边,则存放前驱点i
}
else {
path[i][j] = -1; //i-j无边,置为-1,表示暂时没有前驱;
}
}
}
从顶点0到6开始,逐个作为中间点
由于点0入度为0(即没有边指向点0),所以其他点到剩余点的路径不变
接着到点1作为中间点,遍历从点 i(除中间点 1 外)到剩余点 j ,将点 i 到点 j 与点 i -> 1 -> j 的值进行比较,如果i->j的值< i -> 1 -> j 的值,则更新 i -> j 的最小路径为 i -> 1 -> j 的值,并且设置1-> j 的前驱点为 i。直至遍历完 j 点,再开始更新 i 点; 直到 i 点遍历完,接着更新中间点k
for (int k = 0;k < 7;k++) { //顶点0~6开始作为一个中间点
for (int i = 0;i < 7;i++) {
for (int j = 0;j < 7;j++) {
if (arr[i][j] > arr[i][k] + arr[k][j]) { //比较i->j的值和i->k->j的值,如果大于经过中间点k则更新值
arr[i][j] = arr[i][k] + arr[k][j];
path[i][j] = path[k][j]; //更新路径,j的前驱为k->j的前驱
}
}
}
}
以此类推……
代码如下:
#include<iostream>
using namespace std;
const int INF = 1e9;
int g[7][7] = { //连通图邻接矩阵
{0 ,4 ,6 ,6 ,INF,INF,INF},
{INF,0 ,1 ,INF,7 ,INF,INF},
{INF,INF,0 ,INF,6 ,4 ,INF},
{INF,INF,2 ,0 ,INF,5 ,INF},
{INF,INF,INF,INF,0 ,INF,6 },
{INF,INF,INF,INF,1 ,0 ,8 },
{INF,INF,INF,INF,INF,INF,0 }
};
int arr[7][7]; //用于存放各个点到其他的点的最短长度
int path[7][7]; //用于存放最短路径
void floyd() {
for (int i = 0;i < 7;i++) {
for (int j = 0;j < 7;j++) {
arr[i][j] = g[i][j]; //初始最短距离为邻接矩阵的直接权值(未经过中间节点)
if (g[i][j] != 0 && g[i][j] < INF) { //存放路径
path[i][j] = i; //若i-j有边,则存放前驱点i
}
else {
path[i][j] = -1; //i-j无边,置为-1,表示暂时没有前驱;
}
}
}
for (int k = 0;k < 7;k++) { //顶点0~6开始作为一个中间点
for (int i = 0;i < 7;i++) {
for (int j = 0;j < 7;j++) {
if (arr[i][j] > arr[i][k] + arr[k][j]) { //比较i->j的值和i->k->j的值,如果大于经过中间点k则更新值
arr[i][j] = arr[i][k] + arr[k][j];
path[i][j] = path[k][j]; //更新路径,j的前驱为k->j的前驱
}
}
}
}
}
void dispath() { // 用于输出各到各点的最小路径值以及路径
for (int i = 0;i < 7;i++) {
for (int j = 0;j < 7;j++) {
if (arr[i][j] < INF && i != j) { //输出已求出最短路径的顶点(不包含本身)
printf(" %d 到 %d 的径为:", i, j);
int k = path[i][j]; //将k赋为i->j的前驱结点
int d = 0;
int path1[7]; //用于逆序输出路径
path1[d] = j; //添加终点 j
while (k!= i) { //不断将路径放入path1中
path1[++d] = k;
k = path[i][k]; //更新k为i-k的上一个点
}
path1[++d] = i; //最后将起始点放入path1中
printf("%d ", path1[d]); //反向输出路径
for (int s = d - 1;s >= 0;s--) {
printf(",%d ", path1[s]);
}
printf("\t路径长度为:%d\n", arr[i][j]);
}
}
printf("\n");
}
}
int main() {
floyd();
dispath();
return 0;
}
结果如下:
总结:Floyd算法的核心思想就是动态规划,不断的通过比较当前两点之间的最短路径与经过中间点的路径,来更新最小路径值。
此篇文章用于给自己巩固知识点,如果帮助到大家也是非常荣幸,如果文章有错误,感谢批评和指出。