spice
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
27、深入解析计算智能与网络系统中的前沿技术
本文全面探讨了计算智能与网络系统的前沿技术,涵盖了视频推荐系统、物联网入侵检测和植物蛋白分类等关键应用领域。重点介绍了SemVidRec和MLSM等语义推荐模型的架构与实现,并分析了深度学习在入侵检测和蛋白质分类中的应用。此外,还讨论了数据工程实践及安全隐私保护策略,为下一代无缝计算的发展提供了方向。原创 2025-06-29 06:00:00 · 22 阅读 · 0 评论 -
26、深入解析计算智能与网络系统会议中的关键技术
本文深入解析了计算智能与网络系统会议(CINS 2023)中的关键技术,包括基于语义网的视频推荐系统模型SemVidRec、物联网环境下的入侵检测方法、植物蛋白分类中的K-mer编码技术以及灾难推文的机器学习分类方法。通过结合深度学习、传统机器学习和多模态数据融合策略,这些技术在各自领域中展现了卓越的性能和广阔的应用前景。文章还探讨了未来的研究方向,如实时数据处理和模型解释性的提升。原创 2025-06-28 10:21:49 · 12 阅读 · 0 评论 -
25、结论与未来工作
本文全面总结了计算智能与网络系统、视频推荐系统、物联网入侵检测、植物蛋白分类等领域的研究进展。重点介绍了SemVidRec模型在视频推荐中的语义方法,基于深度学习的物联网入侵检测模型,以及K-mer编码在植物蛋白分类中的应用。同时讨论了当前研究的局限性,并提出了数据增强、迁移学习、模型压缩等改进建议。此外,还展示了灾难推文分类和不同机器学习模型的性能对比,最后展望了未来智能化推荐系统、安全物联网网络和高效蛋白质分类的发展方向。原创 2025-06-27 13:08:44 · 14 阅读 · 0 评论 -
24、机器学习与深度学习模型对比:视频推荐系统与物联网安全中的应用
本文探讨了机器学习和深度学习模型在视频推荐系统与物联网安全中的应用,对比了两种方法在准确度、计算成本及适用场景等方面的优劣势。通过具体实验数据展示了深度学习模型如SemVidRec、DBN和LSTM在处理大规模复杂任务中的卓越性能,并讨论了模型优化和实际应用中的挑战与解决方案。原创 2025-06-26 15:02:41 · 11 阅读 · 0 评论 -
23、灾难推文分类的性能评估
本文探讨了多语言环境下灾难推文分类的性能评估,比较了多种传统机器学习和深度学习模型的效果。重点分析了特征提取方法、不同语言及灾难类型对模型性能的影响,并引入注意力机制的BiLSTM模型取得了最佳表现。原创 2025-06-25 13:12:56 · 7 阅读 · 0 评论 -
22、非序列与序列特征提取在现代数据处理中的应用
本文深入探讨了非序列与序列特征提取在现代数据处理中的应用,详细介绍了两种特征类型的特点、提取方法及其优化策略。博文内容涵盖图像处理、用户画像、文本分类、时间序列预测、自然语言处理、视频处理等多个实际应用场景,并结合具体案例(如视频推荐系统、物联网入侵检测、植物蛋白质分类)展示了特征提取的实际效果。此外,还讨论了特征提取的性能评估指标及优化改进方向,为构建精准高效的模型提供了理论支持和实践指导。原创 2025-06-24 12:39:20 · 9 阅读 · 0 评论 -
21、数据集描述与预处理:从原始数据到模型就绪
本文详细介绍了从原始数据到模型就绪的数据预处理流程,包括数据集的来源与结构分析、文件格式转换、特征提取与合并、特征选择方法、数据集分割策略、性能评估指标以及数据可视化手段。以植物蛋白分类任务为例,提供了具体的代码实现和步骤解析,旨在为数据驱动的研究和应用提供系统性的指导。原创 2025-06-23 11:08:38 · 19 阅读 · 0 评论 -
20、文本分类与灾难推文
本文探讨了在灾难发生时,如何利用机器学习和深度学习技术对社交媒体平台(如Twitter)上的多语言推文进行快速准确的分类。文章介绍了包括支持向量机(SVM)、模糊C均值聚类、余弦相似度等传统方法,以及BiLSTM和BERT等深度学习模型的应用。通过详细的性能评估和实际案例分析,展示了这些技术在灾难响应中的重要作用,为应急管理和灾害救援提供了强有力的技术支持。原创 2025-06-22 10:17:03 · 8 阅读 · 0 评论 -
19、多标签分类的集成方法
本文介绍了多标签分类的基本概念、应用场景及挑战,并详细探讨了集成方法在多标签分类任务中的应用。文章涵盖了Bagging、Boosting和Stacking等主流集成技术的原理与实现流程,提供了多种具体方法的Python示例代码。通过实验验证,集成方法在多标签分类中表现出色,尤其是Stacking方法效果最佳。此外,还讨论了模型优化策略,包括参数调优、特征选择和模型融合,并结合可视化工具对模型进行解释与分析。最后通过一个文本分类的实际案例展示了集成方法的应用价值。原创 2025-06-21 11:45:12 · 13 阅读 · 0 评论 -
18、基于K-mer的机器学习方法在植物蛋白分类中的应用
本文探讨了基于K-mer编码的机器学习方法在植物蛋白分类中的应用。通过将蛋白质序列转换为K-mer特征向量,并结合多种机器学习模型进行分类任务,实验结果表明SVM和Multinomial NB分别在简单与复杂分类任务中表现优异。同时,引入了IPCA降维和集成方法以提升模型性能与稳定性,为植物蛋白分类提供了高效的解决方案。原创 2025-06-20 09:31:10 · 9 阅读 · 0 评论 -
17、植物蛋白分类与K-mer编码
本文探讨了K-mer编码在植物蛋白质分类中的应用,介绍了其在处理复杂生物数据时的优势和局限性。通过多个实际案例和实验结果,验证了K-mer编码结合多种机器学习模型(如SVM、多项式朴素贝叶斯等)的有效性,并详细描述了数据预处理、特征表示和模型优化的具体实现步骤。原创 2025-06-19 12:07:30 · 13 阅读 · 0 评论 -
16、优化二分类模型在物联网入侵检测中的性能
本文探讨了如何优化二分类模型在物联网入侵检测中的性能。随着物联网设备的广泛应用,其安全性问题日益突出,而传统安全机制难以直接应用。文章从二分类模型的基本原理和局限性出发,提出了多种优化策略,包括增量主成分分析(IPCA)、特征选择、模型简化、分布式训练、模型压缩以及迁移学习,并通过实验验证这些方法的有效性。此外,还介绍了智能家居和工业物联网中的实际应用案例,展示了优化后的模型在实时入侵检测中的优势。研究结果表明,结合多种优化方法可以显著提高模型效率和准确性,为构建高效可靠的物联网入侵检测系统提供了参考。原创 2025-06-18 14:59:57 · 12 阅读 · 0 评论 -
15、增量主成分分析的应用
本文介绍了增量主成分分析(IPCA)的基本原理及其在大规模数据流和实时场景中的应用。相比传统的PCA,IPCA具有更低的内存占用和更高的计算效率,非常适合物联网、网络安全和金融数据分析等领域。文章通过多个实际案例展示了IPCA的性能优势,并探讨了其优化方向,包括参数调整、自适应更新机制以及与其他算法的结合。原创 2025-06-17 10:42:33 · 13 阅读 · 0 评论 -
14、基于深度学习的物联网入侵检测模型
本文探讨了基于深度学习的物联网入侵检测模型,分析了传统方法的局限性,并提出了一种适用于资源受限环境的高效模型。通过增量主成分分析(IPCA)减少训练时间,在保证准确性的同时提升了性能。实验结果表明,该模型在多个数据集上表现优异,尤其适合物联网环境。此外,文章还介绍了深度学习在植物蛋白分类中的应用,展示了其在不同领域的广泛前景。原创 2025-06-16 15:57:48 · 10 阅读 · 0 评论 -
13、物联网入侵检测的挑战与解决方案
本文探讨了物联网环境下的安全挑战,重点分析了入侵检测的解决方案。由于物联网设备资源受限,传统的安全机制难以适用,因此引入了深度学习技术,如LSTM、GRU和BiLSTM用于提升检测精度。同时,通过增量主成分分析(IPCA)等优化方法显著减少了模型的训练时间,使深度学习模型更适合部署在物联网环境中。文章还介绍了数据预处理、特征选择以及实验结果,验证了这些方法的有效性。此外,简要提到了K-mer编码在植物蛋白分类中的应用,展示了其在特征表示方面的潜力。原创 2025-06-15 10:10:40 · 11 阅读 · 0 评论 -
12、SemVidRec:视频推荐系统的性能评估
本文介绍了SemVidRec,一种基于语义的注释驱动视频推荐系统,并详细评估了其性能。该模型在多个关键指标(如精确度95.43%、召回率97.47%和nDCG 0.97)上优于其他现有模型(如VAVR、PVRRC和CCVR),展示了其卓越的推荐准确性和个性化程度。文章还讨论了模型的技术细节、局限性及未来改进方向。原创 2025-06-14 13:06:22 · 8 阅读 · 0 评论 -
11、SemVidRec模型的设计与实现
本文介绍了SemVidRec模型的设计与实现,该模型结合了语义网和机器智能,旨在提高推荐系统的准确性。文章详细阐述了模型的动机、贡献、架构及优化方法,并通过实验验证了其在多个指标上的卓越性能。原创 2025-06-13 14:37:49 · 5 阅读 · 0 评论 -
10、基于语义网络的推荐模型设计与实现
本文探讨了一种基于语义网络的推荐模型设计与实现方法,通过结合语义相似性和结构化主题建模技术,提升了推荐系统的准确性和多样性。文章详细介绍了语义网络的构建过程、语义相似性的计算方式、特征提取方法以及模型评估结果,并提出了改进模型性能的方向。实验表明,该模型在多个评价指标上均优于现有基线模型。原创 2025-06-12 09:28:49 · 9 阅读 · 0 评论 -
9、视频推荐系统的语义方法:SemVidRec模型的创新与应用
本文介绍了SemVidRec模型,一种基于语义的视频推荐系统,旨在利用语义网络、结构化主题建模和特征分类技术,提高视频推荐的准确性与用户个性化体验。通过结合DBpedia知识库和香农熵等方法,该模型在多个评估指标上表现出优越性能,并展示了实际应用中的潜力。原创 2025-06-11 13:40:05 · 8 阅读 · 0 评论 -
8、智能网络技术的发展与应用
本文全面探讨了智能网络技术的核心概念、关键架构及其在多个领域的应用。从软件定义网络(SDN)和网络功能虚拟化(NFV)的基础架构,到智能网络管理、安全防护,再到智能交通、智慧城市和工业互联网的实际案例,展示了智能网络技术如何提升网络性能、安全性和可靠性,并推动各行业的数字化转型与智能化升级。原创 2025-06-10 09:33:00 · 7 阅读 · 0 评论 -
7、智能网络技术:推动未来网络发展的关键技术
本博文全面探讨了智能网络技术的定义、背景及其在现代信息技术领域的重要性。文章详细介绍了软件定义网络(SDN)、网络功能虚拟化(NFV)和边缘计算等关键技术,分析了它们的核心应用场景。同时,博文还深入讨论了智能网络面临的安全威胁及相应的防护措施,并探讨了用户隐私保护策略。展望未来,文章预测智能网络技术将与人工智能、区块链等新兴技术深度融合,并在物联网领域发挥更大作用,推动智能家居、智能交通、智能医疗等行业的发展。此外,通过多个实际案例,如智能交通系统、智慧城市和智能家居,展示了智能网络技术在不同场景中的广泛应原创 2025-06-09 09:53:46 · 22 阅读 · 0 评论 -
6、计算智能与网络系统:前沿技术与应用
本文综述了计算智能与网络系统的前沿技术与应用,涵盖了从视频推荐模型SemVidRec、心脏病诊断模型HeartBeatNet到物联网入侵检测和植物蛋白分类等多个领域的研究成果。文章详细介绍了基于深度学习和机器学习的技术在不同场景中的应用及性能评估,并探讨了未来发展方向。原创 2025-06-08 14:46:34 · 6 阅读 · 0 评论 -
5、探讨计算智能与网络系统的未来:会议主题与讨论
本文探讨了首届国际计算智能与网络系统会议(CINS 2023)的核心议题,包括下一代无缝计算的愿景、技术挑战与解决方案、学术界与工业界的互动、新颖的研究方向以及未来趋势。同时,文章深入分析了物联网、软件定义网络、云计算、智能网络等新兴领域的应用案例,并讨论了数据工程、安全隐私及视频推荐系统的语义方法等关键问题。这些内容为计算智能和网络系统的发展提供了理论支持和实践启示。原创 2025-06-07 14:49:41 · 9 阅读 · 0 评论 -
4、论文提交与评审过程:确保高质量学术交流
本文介绍了国际计算智能与网络系统会议(CINS 2023)的论文提交与评审过程。会议共收到130篇论文,最终11篇高质量论文被接受,并收录在斯普林格CCIS系列会议论文集中。所有论文经过严格的单盲评审流程,由三位独立评审者评估,并提供了详细反馈以帮助作者改进研究内容。会议上,入选论文通过15分钟演讲和5分钟问答环节展示,促进了学术交流与合作。本次会议成功推动了相关领域的学术进步和技术应用发展。原创 2025-06-06 13:10:32 · 11 阅读 · 0 评论 -
3、会议组织与参与:CINS 2023回顾
CINS 2023(国际计算智能与网络系统会议)于2023年10月在迪拜成功举办,汇聚了全球顶尖学者和行业领袖,围绕‘下一代无缝计算’主题,深入探讨了计算智能与网络系统的前沿技术与发展趋势。会议包括主旨演讲、技术报告、海报展示及多个工作坊,展示了最新的研究成果,并通过严格的论文评审流程确保学术质量。博文详细回顾了会议的组织架构、重要嘉宾、议程安排以及技术亮点,总结了领域内的主要挑战及创新解决方案,为未来研究和合作提供了重要参考。原创 2025-06-05 11:01:09 · 10 阅读 · 0 评论 -
2、国际计算智能与网络系统会议(CINS 2023):背景与目的
国际计算智能与网络系统会议(CINS 2023)于2023年10月18日至20日在阿联酋迪拜成功举行。会议旨在促进‘下一代无缝计算’的发展,汇聚了来自学术界和工业界的顶尖专家,探讨计算智能与网络系统的前沿议题。会议涵盖了新型计算方法、智能技术、数据处理、网络安全等多个方向,并展示了SemVidRec视频推荐模型、6G网络协议安全研究、深度学习入侵检测模型以及植物蛋白分类的K-mer编码方法等重要成果。通过主旨演讲、研讨会和圆桌论坛等活动,CINS 2023为全球研究人员提供了高水平的交流平台,并为该领域未来原创 2025-06-04 10:47:56 · 12 阅读 · 0 评论 -
1、国际计算智能与网络系统会议(CINS 2023)简介
2023年10月18日至20日,首届国际计算智能与网络系统会议(CINS 2023)在迪拜成功举办。会议旨在推动‘下一代无缝计算’的发展,汇聚了来自全球的学术界和工业界专家,围绕计算智能、网络技术、数据工程、安全隐私等多个前沿主题展开深入探讨。会议收录了11篇高质量论文,并展示了如SemVidRec语义视频推荐模型、物联网入侵检测等创新研究成果。会议由比尔拉科技学院迪拜校区主办,并得到了Springer等知名机构的支持,为未来计算与网络领域的创新发展奠定了基础。原创 2025-06-03 13:57:45 · 20 阅读 · 0 评论