Python与FPGA——帧间差算法

本文介绍了如何使用Python和OpenCV实现帧间差法来检测运动物体,通过摄像头获取连续帧并应用阈值处理,展示了从图像灰度处理到差分计算的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

  帧间差法可以检测运动物体,通过摄像头获取连续的两帧或者三帧进行差值处理,像素变化较大的可以认为是运动的目标,变化小的可以认为是背景。这里提到摄像头,因为我们的项目没有摄像头,所以FPGA部分就不需要实现,但是后期会考虑加入摄像头。


一、帧间差算法

  帧间差算法的核心是阈值的选择。如果阈值偏大,则变化较小的移动的物体就会被忽略,相应的运动较大的移动物体被保留下来;反之,如果阈值偏小,则可能变化较小的目标也被保留下来,会出现满屏的运动像素的现象。

二、Python实现帧差法

import cv2
import numpy as np
#图像灰度处理
def image_gray(image):
    gray = np.dot(image[:, :, ...], [0.3, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值