np.eye()以及np.identity()

本文详细介绍了NumPy中的np.eye()与np.identity()函数。np.eye()用于生成指定形状的单位矩阵,可通过参数调整对角线位置及数据类型;np.identity()则专门用于创建方阵,且默认为浮点型。同时,文中还展示了如何使用np.eye()生成one-hot向量作为训练样本标签。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、np.eye()
1. 函数的原型:numpy.eye(N,M=None,k=0,dtype=<class 'float'>,order='C)

返回的是一个二维2的数组(N,M),对角线的地方为1,其余的地方为0.

参数介绍:

(1)N:int型,表示的是输出的行数

(2)M:int型,可选项,输出的列数,如果没有就默认为N

(3)k:int型,可选项,对角线的下标,默认为0表示的是主对角线,负数表示的是低对角,正数表示的是高对角。

(4)dtype:数据的类型,可选项,返回的数据的数据类型

(5)order:{‘C’,‘F'},可选项,也就是输出的数组的形式是按照C语言的行优先’C',还是按照Fortran形式的列优先‘F'存储在内存中

案例:(普通的用法)

import numpy as np
 
a=np.eye(3)
print(a)
 [[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]
a=np.eye(4,k=1)
print(a)
 [[0. 1. 0. 0.]
 [0. 0. 1. 0.]
 [0. 0. 0. 1.]
 [0. 0. 0. 0.]]
2. 利用np.eye()生成One-hot向量或one-hot数组用作训练样本标签向量,例如

import numpy as np
 
labels=np.array([[1],[2],[0],[1]])#标签向量

a=np.eye(3)[1]#生成第二类的标签向量[[0. 1. 0.]]

labels转成one-hot形式的结果:
 [[0. 1. 0.]
 [0. 0. 1.]
 [1. 0. 0.]
 [0. 1. 0.]] 
 
labels转化成one-hot后的大小: (4, 3)
          
二、np.identity()
这个函数和之前的区别在于,这个只能创建方阵,也就是N=M

函数的原型:np.identity(n,dtype=None)

参数:n,int型表示的是输出的矩阵的行数和列数都是n

dtype:表示的是输出的类型,默认是float

返回的是nxn的主对角线为1,其余地方为0的数组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值