计算机视觉(下)NO.2人脸检测、LBP算法
原始的LBP是一个特征提取器,将纹理特征定义为领域像素和中心像素的差的级联分布,周围像素的位置标记取决于中心像素值,原始的3*3LBP算子只能覆盖小范围区域,所以引进了圆形LBP算子。
LBP具有灰度不变性,图像灰度处理后可以简化运算,但是并不具有旋转不变性,旋转可以改变特征,对于产生的二进制模式,不同的模式间如果只有两次以内(包含两次)的跳变,则为等价模式,除等价模式以外的其他模式,称为混合模式,如此进行改进以后,LBP模式数目可以实现降维,减少高频噪声的影响。
人脸检测的流程是采用多尺度划窗搜索的方式,检测到人脸以后通过所有分类器。目前所学算法读取原始图像后进行灰度处理和搜索检测,但是没有涉及到具体如何搜索,是用训练好的数据(.xml文件)(级联分类器)对图像进行判别,如此在实现时,对于图像的要求也有很多限制,不容易检测出多个人脸(至少目前我还没有实现),易出现断言失败等错误。