本篇论文来自ICML2025最新时序论文,提出了一种结合了自回归 Transformer 和去噪扩散过程的用于时间序列自监督表示学习的新框架 -TimeDART。最新ICML2025全部63篇时序相关论文我已经整理好了,关注工中浩扫码回复“ICML2025时序合集”即可自取哦~
文章信息
论文名称:TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
论文作者:Daoyu Wang, Mingyue Cheng, Zhiding Liu, Qi Liu
研究背景
现在真实场景中存在大量未标记的时间序列数据,自监督学习可减少对标记数据的依赖,但现有方法难以同时捕捉长期动态演变和细微局部模式。
传统的掩码自编码器预训练与微调不一致。 而对比学习难以捕捉细粒度时间变化。 传统自回归方法也易过拟合噪声,预测值易陷入固定方差的高斯分布。
因此提出 TimeDART,目的是通过结合自回归 Transformer 和去噪扩散过程,学习更具迁移性的时间序列表示。
模型框架
TimeDART框架:包含标准化与补丁嵌入、因果 Transformer 编码器和补丁级扩散去噪三个模块。
关键技术:
-
补丁嵌入策略:将时间序列划分为非重叠补丁,减少计算复杂度,稳定嵌入。
-
因果 Transformer 编码器:使用因果掩码限制每个补丁仅关注自身和先前补丁,建模从左到右的演变趋势。
-
补丁级扩散去噪:前向过程,对每个补丁独立添加噪声,采用余弦噪声调度器,避免任务简化。反向过程,去噪解码器以编码器输出为键和值,噪声补丁嵌入为查询,实现自回归优化。
优化目标:用扩散损失替代传统均方误差损失,捕捉时间序列的多模态分布
实验数据
数据集:有9个公开数据集,包括6个预测数据集(如 ETT、PEMS)和3个分类数据集(如 HAR、EEG)。
实验结果:
-
预测任务:在 83.3% 的评估指标上表现最佳,比随机初始化降低 6.8% 的 MSE,比现有方法降低 3%。
-
分类任务:预训练后平均准确率比随机初始化提高约 5.7%,超越部分监督方法。
-
跨域迁移:在能源、天气等领域表现优于其他自监督方法,证明知识迁移能力。
-
消融实验:自回归机制和扩散去噪过程均不可或缺,移除任一模块性能显著下降。
-
鲁棒性分析:对噪声步数、调度器等超参数不敏感,余弦调度器优于线性调度器。
小小总结
TimeDART 通过融合自回归和扩散模型的优势,在时间序列自监督表示学习中取得了显著效果,为后续研究提供了新方向。未来可探索更复杂的多模态时间序列场景,或与其他生成模型结合进一步提升性能。
小时收集整理了全部63篇ICML2025时序论文合集方便大家学习,关注工中浩扫码回复“ICML2025时序合集”即可自取,回复“时序大模型”也可以获取其他时序论文合集~
关注小时,持续学习前沿时序技术!