NumPy是使用Python进行科学计算的基础包。它包含其他内容:
一个强大的N维数组对象
复杂的(广播)功能
用于集成C / C ++和Fortran代码的工具
有用的线性代数,傅里叶变换和随机数功能
除了明显的科学用途外,NumPy还可以用作通用数据的高效多维容器。可以定义任意数据类型。这使NumPy能够无缝快速地与各种数据库集成。
NumPy的数组类被调用ndarray。
np.array()
import numpy as np
a=[1,2,3,4,5,6]
print(a)
[1, 2, 3, 4, 5, 6]
A=np.array(a)
print(A)
[1 2 3 4 5 6]
print(type(A))
<class 'numpy.ndarray'>
b=np.array([1,2,3,4,5,6])
print(b)
print(type(b))
[1 2 3 4 5 6]
<class 'numpy.ndarray'>
b*6
array([ 6, 12, 18, 24, 30, 36])
c=np.array([[1,2,3],[4,5,6]])
print(c*2)
cc=[[1,2,3],[4,5,6]]
print(cc*2)
[[ 2 4 6]
[ 8 10 12]]
[[1, 2, 3], [4, 5, 6], [1, 2, 3], [4, 5, 6]]
ndarray.ndim
数组的轴数(尺寸)。
ndarray.shape
数组的大小。这是一个整数元组,表示每个维度中数组的大小。对于具有n行和m列的矩阵,shape将是(n,m)。shape因此,元组的长度 是轴的数量ndim。
ndarray.size
数组的元素总数。这等于元素的乘积shape。
ndarray.dtype
描述数组中元素类型的对象。可以使用标准Python类型创建或指定dtype。
ndarray.itemsize
数组中每个元素的大小(以字节为单位)。
ndarray.data
包含数组实际元素的缓冲区。
e=np.array([1,2,3,4,5,6],ndmin=3)
print(e)
[[[1 2 3 4 5 6]]]
e=np.array([1,2,3,4,5,6],ndmin=3,dtype=np.complex)
print(e)
e.dtype
[[[1.+0.j 2.+0.j 3.+0.j 4.+0.j 5.+0.j 6.+0.j]]]
dtype('complex128')
查看内部属性
g=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(g)
g.shape=3,4
print(g)
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
[[ 1 2 3 4]
[ 5 6 7 8]
[ 9 10 11 12]]
改变shape属性
g=np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
print(g)
g.shape=2,-1
print(g)
[[ 1 2 3]
[ 4 5 6]
[ 7 8 9]
[10 11 12]]
[[ 1 2 3 4 5 6]
[ 7 8 9 10 11 12]]
h=g.reshape(6,2)
只给出行数
np.empty() 以随机的方式来创建数组
np.zeros 返回指定大小的数组,用0填充
np.zeros_like 复制一个已有数组尺寸的全0矩阵
np.eye 生成单位矩阵
np.asarray()
np.arange()创建于python的range函数,通过指定开始值,终止和步长来创建一位数组 注意数组不包括终止
np.linspace()通过指定开始值和元素个数来创建一位数组 可以通过endpoint关键字指定是否包括终值 默认是包括
np.logspace()创建等比数列
a[5] 读取下标为5的数