t8u9v0
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
9、使用人工智能优化金融和经济预测模型
本文探讨了人工智能技术在金融和经济预测中的应用,包括遗传算法、神经网络等关键技术及其在交易策略优化、通胀预测等方面的实际案例。同时,文章还分析了非线性时间序列预测工具的对比以及数据挖掘技术在时间序列分析中的作用,为读者提供了全面的技术实现路径和应用场景。原创 2025-06-12 16:11:37 · 57 阅读 · 0 评论 -
8、使用神经网络模型探索货币-价格关系
本博文探讨了使用聚合前馈神经网络(AFFNN)探索货币供应量与通货膨胀之间关系的研究。通过学习Divisia成分数据,AFFNN能够生成if-then规则,为货币聚合理论提供有价值的见解。实验结果表明,AFFNN在测试集上表现出良好的泛化能力,并提出了未来优化的方向。原创 2025-06-11 10:22:55 · 34 阅读 · 0 评论 -
7、人工神经网络与向量自回归模型在石油价格预测中的应用
本文探讨了人工神经网络(ANN)与向量自回归(VAR)模型在石油价格预测中的应用,通过实际案例对比了两种方法的预测效果。研究表明,基于遗传算法优化的ANN模型能够更好地捕捉复杂的非线性关系,在预测精度上显著优于VAR模型。原创 2025-06-10 12:38:37 · 32 阅读 · 0 评论 -
6、探索人工智能在金融与经济中的应用:技术与实践
本文探讨了人工智能在金融与经济领域的应用,重点介绍了遗传算法、人工神经网络等技术的实际案例和效果。通过具体研究,展示了这些技术如何提高预测精度和决策效率,并分析了时间序列子序列聚类的局限性及未来应用前景。原创 2025-06-09 10:37:30 · 113 阅读 · 0 评论 -
5、探索金融时间序列分析中的高级模型
本文深入探讨了金融时间序列分析中的高级模型,包括遗传算法、神经网络和遗传编程等技术的应用。通过具体案例和实证分析,展示了这些模型在外汇汇率预测、股票市场预测以及技术交易规则优化中的优势与局限性,为未来的研究和应用提供了方向。原创 2025-06-08 11:51:16 · 166 阅读 · 0 评论 -
4、使用人工智能技术预测通货膨胀:进化策略与神经网络的应用
本文探讨了使用人工智能技术(如进化策略和神经网络)在通货膨胀预测中的应用。通过引入Divisia指数和共进化技术,提高了预测的准确性和泛化能力,并为未来的宏观经济预测模型开发提供了新思路。原创 2025-06-07 11:05:42 · 78 阅读 · 0 评论 -
3、使用非参数搜索算法预测每日超额股票收益
本文探讨了如何使用非参数搜索算法(尤其是遗传算法)来预测每日超额股票收益,并分析其在高频率数据环境下的表现。通过实验设计、数据预处理、模型训练与评估,展示了遗传算法在捕捉复杂非线性关系和避免过拟合方面的优势。此外,还讨论了遗传算法在投资策略制定和风险管理中的实际应用,并展望了未来可能的发展方向。原创 2025-06-06 15:40:01 · 61 阅读 · 0 评论 -
2、非线性时间序列预测模型对比:RS-VAR与RNN
本文探讨了非线性时间序列预测中两种代表性模型——区制转换向量自回归模型(RS-VAR)和循环神经网络(RNN)的预测性能,并与传统线性VAR模型进行对比。通过分析英国通货膨胀数据,展示了RS-VAR和RNN模型在月度及年度预测中的优势,并讨论了模型的优化方法及其在金融市场、宏观经济等领域的应用前景。最后,文章指出了模型的局限性并展望了未来的研究方向。原创 2025-06-05 09:50:19 · 132 阅读 · 0 评论 -
1、使用遗传编程建模国际短期资本流动
本文探讨了使用遗传编程(GP)建模国际短期资本流动的方法,分析了1997-2002年间台湾与美国、香港、日本和英国之间的短期资本流动。研究表明,在此期间市场相对有效,多数GP生成的交易策略倾向于买入并持有。同时,自动定义函数对结果无明显优势,常用技术交易规则在转换后的时间序列数据上表现不佳。研究为学术界和投资者提供了关于市场行为和投资策略的重要见解。原创 2025-06-04 14:30:21 · 72 阅读 · 0 评论