📝前言说明:
- 本专栏主要记录本人的基础算法学习以及LeetCode刷题记录,按专题划分
- 每题主要记录:(1)本人解法 + 本人屎山代码;(2)优质解法 + 优质代码;(3)精益求精,更好的解法和独特的思想(如果有的话)
- 文章中的理解仅为个人理解。如有错误,感谢纠错
🎬个人简介:努力学习ing
📋本专栏:C++刷题专栏
📋其他专栏:C语言入门基础,python入门基础,C++学习笔记,Linux
🎀CSDN主页 愚润泽
什么是分治——快速排序
- 分治:分而治之。把大问题划分成多个相同的小问题,直到划分到一个可以迅速解决的子问题(可以递归)。
- 快排:之前我们所用的快排是把区间划分成:
<=point
和>point
两个区间 - 快排优化:
- 分三块区域:把区间划分成:
<point
、==point
、>point
三个区间 - 选
point
的时候,随机选择基准元素
- 分三块区域:把区间划分成:
75. 颜色分类
题目链接:https://leetcode.cn/problems/sort-colors/description/
优质解
思路:
- 题意:这道题相当于,选取
1
作为基准元素,把数组划分成三部分<1
、==1
、>1
- 解题方法(三指针):
i
、left
、right
指针:i
遍历数组;left
指向<1
区间的右边界(因为这个区间的左边是0
);right
指向>1
区间的左边界(因为这个区间的右边是n-1
)
- 在扫描的时候,数组会被划分成四个区域:
[0, left]
:全是0
[left + 1, i - 1]
:全是1
[i, right - 1]
:全是带扫描的元素[right, n - 1]
:全是2
i
扫描时对于元素的处理:nums[i] == 0
:left++
左区间扩大,然后交换nums[left]
和nums[i]
,交换完以后,i++
继续遍历,因为前面的元素都已经遍历过了。nums[i] == 2
:right--
右区间扩大,然后交换nums[right]
和nums[i]
,交换完以后,i
不用++
,因为交换过来的是没有遍历过的。nums[i] == 1
:直接i++
代码:
class Solution {
public:
void sortColors(vector<int>& nums)
{
int n = nums.size();
for(int i = 0, left = -1, right = n; i < right; i++)
{
if(nums[i] == 1)
continue;
else if(nums[i] == 0)
swap(nums[++left], nums[i]);
else
swap(nums[--right], nums[i--]); // i-- 和 for 的i++ 抵消
}
}
};
时间复杂度:O(n)
空间复杂度:O(1)
912. 排序数组
题目链接:https://leetcode.cn/problems/sort-an-array/description/
优质解
思路:
- 随机方式选基准 + 三块区域的快排
- 三块区域的快排:和75. 颜色分类这道题一样
- 随机方式选基准
point
:- 用随机数,然后映射到区间上,实现等概率随机选
- 映射方式,即:
pi = a % (right - left + 1) + left
(pi
是随机基准的下标)
- 关于随机数生成:
rand()
生成的是伪随机数(和种子有关)- 用
srand()
可以来设置随机数种子 - 通常使用
time(nullptr)
返回的时间戳作为srand()
的参数,来设置不同的种子(因为时间是不断变化的)
代码:
class Solution {
public:
int getrandpoint(vector<int>& nums, int left, int right)
{
int a = rand(); // 生成随机数
return nums[(a % (right - left + 1)) + left];
}
void qsort(vector<int>& nums, int l, int r)
{
if(l >= r) return;
int point = getrandpoint(nums, l, r);
int i = l, right = r + 1, left = l - 1; // 注意开始时是空区间
while(i < right)
{
if(nums[i] == point)
i++;
else if(nums[i] < point)
swap(nums[++left], nums[i++]);
else
swap(nums[--right], nums[i]);
}
qsort(nums, l, left);
qsort(nums, right, r);
}
vector<int> sortArray(vector<int>& nums)
{
srand(time(nullptr)); // 设置随机种子
qsort(nums, 0, nums.size() - 1);
return nums;
}
};
时间复杂度:平均:O(nlogn),最坏:O(n^2)【每次选的都是最大 / 最小元素,几乎不会出现】
空间复杂度:平均:O(logn)【调用栈的深度】,最坏:O(n)【几乎不会出现】
215. 数组中的第K个最大元素
题目链接:https://leetcode.cn/problems/kth-largest-element-in-an-array/description/
优质解
思路:
top k
问题:第 k 大,第 k 小,前 k 大,前 k 小- 解决方法:堆排序: 或 快速选择算法(基于快排)
- 快速选择算法:
- 分情况讨论不一样:
- 在分好区间以后,不是直接左右区间都再排,而是根据 k 判断第 k 大再哪个区间,然后仅需去那个区间找。
- 设从左到右,区间的元素依次为a、b、c
k <= c
:则在c
区域,继续在c
里面找第k
大c < k < = b + c
:则在b
区域,直接返回point
(因为这个区间全是== point
)b + c < k
:则在a
区域,变成:找a
区域里面的第k - b - c
大的元素
- 分情况讨论不一样:
代码(快速选择):
class Solution {
public:
// 获得随机基准
int getrandpoint(vector<int>& nums, int left, int right)
{
int a = rand(); // 生成随机数
return nums[(a % (right - left + 1)) + left];
}
//
int qselect(vector<int>& nums, int k, int l, int r)
{
if(l == r) return nums[l]; // 区间长度为 1 的时候,一定是目标值
int point = getrandpoint(nums, l, r);
int i = l, left = l - 1, right = r + 1;
// 区域划分
while(i < right)
{
if(nums[i] < point) swap(nums[++left], nums[i++]);
else if(nums[i] == point) i++;
else swap(nums[--right], nums[i]);
}
// 分情况讨论去那个区间寻找
int c = r - right + 1, b = right - left - 1;
if(c >= k) return qselect(nums, k, right, r);
else if(c + b >= k) return point;
else return qselect(nums, k - b - c, l, left);
}
int findKthLargest(vector<int>& nums, int k) {
srand(time(nullptr));
return qselect(nums, k, 0, nums.size() - 1);
}
};
时间复杂度:O(n)
空间复杂度:O(logn)
代码(堆排序,作者:力扣官方题解):
class Solution {
public:
void maxHeapify(vector<int>& a, int i, int heapSize) {
int l = i * 2 + 1, r = i * 2 + 2, largest = i;
if (l < heapSize && a[l] > a[largest]) {
largest = l;
}
if (r < heapSize && a[r] > a[largest]) {
largest = r;
}
if (largest != i) {
swap(a[i], a[largest]);
maxHeapify(a, largest, heapSize);
}
}
void buildMaxHeap(vector<int>& a, int heapSize) {
for (int i = heapSize / 2 - 1; i >= 0; --i) {
maxHeapify(a, i, heapSize);
}
}
int findKthLargest(vector<int>& nums, int k) {
int heapSize = nums.size();
buildMaxHeap(nums, heapSize);
for (int i = nums.size() - 1; i >= nums.size() - k + 1; --i) {
swap(nums[0], nums[i]);
--heapSize;
maxHeapify(nums, 0, heapSize);
}
return nums[0];
}
};
时间复杂度:O(nlogn)
空间复杂度:O(logn) ,因为这里是递归的,有递归栈调用
LCR 159. 库存管理 III
题目链接:https://leetcode.cn/problems/zui-xiao-de-kge-shu-lcof/description/
个人解
思路:
- 这就是 top k 的前 k 小问题
- 我们可以找到第 k 个数,然后把 第 k 个数前面的元素都排好了,最后提取出来就行
用时:
屎山代码:
class Solution {
public:
int getrandpoint(vector<int>& stock, int l, int r)
{
return stock[rand() % (r - l + 1) + l];
}
void qselect(vector<int>& stock, int cnt, int l, int r)
{
if(l >= r) return; // l == r 只有一个元素的区间, l > r 空区间
int i = l, left = l - 1, right = r + 1;
int point = getrandpoint(stock, l, r);
// 分区
while(i < right)
{
if(stock[i] < point) swap(stock[++left], stock[i++]);
else if(stock[i] == point) i++;
else swap(stock[--right], stock[i]);
}
// 分类讨论
int a = left - l + 1, b = right - left - 1;
if(cnt <= a)
return qselect(stock, cnt, l, left);
else if(cnt <= a + b) // 中间部分不需要判断是第几个,因为都是相同的,直接取就行
return;
else
return qselect(stock, cnt - a - b, right, r);
}
vector<int> inventoryManagement(vector<int>& stock, int cnt)
{
srand(time(nullptr));
qselect(stock, cnt, 0, stock.size() - 1);
vector<int> ans;
for (int i = 0; i < cnt; i++)
ans.push_back(stock[i]);
return ans;
}
};
时间复杂度:期望:O(n)
空间复杂度:期望:O(logn)
🌈我的分享也就到此结束啦🌈
要是我的分享也能对你的学习起到帮助,那简直是太酷啦!
若有不足,还请大家多多指正,我们一起学习交流!
📢公主,王子:点赞👍→收藏⭐→关注🔍
感谢大家的观看和支持!祝大家都能得偿所愿,天天开心!!!