📝前言说明:
- 本专栏主要记录本人递归,搜索与回溯算法的学习以及LeetCode刷题记录,按专题划分
- 每题主要记录:(1)本人解法 + 本人屎山代码;(2)优质解法 + 优质代码;(3)精益求精,更好的解法和独特的思想(如果有的话)
- 文章中的理解仅为个人理解。如有错误,感谢纠错
🎬个人简介:努力学习ing
📋本专栏:C++刷题专栏
📋其他专栏:C语言入门基础,python入门基础,C++学习笔记,Linux
🎀CSDN主页 愚润泽
你可以点击下方链接,进行该专题内不同子专题的学习
点击链接 | 开始学习 |
---|---|
导论 | 递归 (一) 、递归 (二) |
二叉树的深搜 | 穷举 vs 暴搜 vs 深搜 vs 回溯 vs 剪枝 |
综合练习(一) | 综合练习(二) |
综合练习(三) | 综合练习(四) |
FloodFill(一) | FloodFill(二) |
记忆化搜索(一) | 记忆化搜索(二) |
题单汇总链接:点击 → 题单汇总
专题开篇导论(以509. 斐波那契数为例)
题目链接:https://leetcode.cn/problems/fibonacci-number/description/
记忆化搜索是带备忘录的递归(用于在递归时出现重复结果的情况)
普通递归展开图:
1. 记忆化搜索
我们可以发现:d(2), d(3)被重复计算了(出现重复问题),因此我们可以引入一个备忘录
- 在递归返回之前把结果加入备忘录
- 在递归展开之前,先找找备忘录里面是否有当前要展开的“数”的结果
- 注意:备忘录的初始化:要让备忘录的初始化值为不可能出现的结果,即:不会影响后续的搜索
代码实现:
class Solution {
public:
vector<int> hash = vector<int>(31, -1);
int dfs(int n)
{
// 先找备忘录
if(hash[n] != -1)
return hash[n];
// 递归展开
if(n == 1 || n == 0)
{
hash[n] = n; // 把结果加入备忘录
return hash[n];
}
hash[n] = dfs(n - 1) + dfs(n - 2); // 结果加入备忘录
return hash[n];
}
int fib(int n)
{
return dfs(n);
}
};
时间复杂度:
O
(
n
)
O(n)
O(n)
空间复杂度:
O
(
n
)
O(n)
O(n)
2. 记忆化搜索对比动态规划
记忆化搜索和动态规划都是对暴力解法的优化 → 把计算过的值“存起来”
- 带备忘录的递归 vs 带备忘录的动态规划(普通动态规划) vs 记忆化搜索:都是一回事
- 暴搜 + 记忆化搜索 →(可以转换成) 动态规划
- 但是不建议所有的题目都这样做,要具体题目具体分析
- 暴搜可以给我们动态规划的状态表示提供一个方向
62. 不同路径
题目链接:https://leetcode.cn/problems/unique-paths/description/
个人解
思路:
- 简单练习题,不说了
用时:6:00
屎山代码:
class Solution {
public:
int dfs(int x, int y, vector<vector<int>>& mem)
{
// 先找mem
if(mem[x][y] != 0)
return mem[x][y];
// 递推自顶向下,回归是自底向上的,所以递归的结束条件应该观察底
if(x == 0 || y == 0) // 最左边那一路和左右边那一路都只有一种走法
{
mem[x][y] = 1;
return mem[x][y];
}
mem[x][y] = dfs(x - 1, y, mem) + dfs(x, y - 1, mem);
return mem[x][y]; // 不会越界因为上面约束了
}
int uniquePaths(int m, int n)
{
vector<vector<int>> mem(m + 1, vector<int>(n + 1));
return dfs(m - 1, n - 1, mem);
}
};
时间复杂度:
O
(
m
∗
n
)
O(m*n)
O(m∗n)
空间复杂度:
O
(
m
∗
n
)
O(m*n)
O(m∗n)
🌈我的分享也就到此结束啦🌈
要是我的分享也能对你的学习起到帮助,那简直是太酷啦!
若有不足,还请大家多多指正,我们一起学习交流!
📢公主,王子:点赞👍→收藏⭐→关注🔍
感谢大家的观看和支持!祝大家都能得偿所愿,天天开心!!!