- 博客(3)
- 收藏
- 关注
原创 【打卡】大模型-RAG学习
在自然语言处理领域,大型语言模型(LLM)如GPT-3、BERT等已经取得了显著的进展,它们能够生成连贯、自然的文本,回答问题,并执行其他复杂的语言任务。然而,这些模型存在一些固有的局限性,如“模型幻觉问题”、“时效性问题”和“数据安全问题”。为了克服这些限制,检索增强生成(RAG)技术应运而生。RAG技术结合了大型语言模型的强大生成能力和检索系统的精确性。它允许模型在生成文本时,从外部知识库中检索相关信息,从而提高生成内容的准确性、相关性和时效性。
2024-01-24 15:43:06
982
原创 智能驾驶汽车虚拟仿真视频数据理解赛道竞赛学clip -- 任务一
对于真值部分,组织者会建立对应的中英文近义词作为真值列表,只要在该列表中就获得分数,例如真值“雨天” = [“雨天”, “雨”, “小雨”…参赛者可采用不同的人工智能的模型和算法,推理出对应视频的描述语言,参赛者可以在给定的备选答案中选出一个正确的答案,如果其描述语言不在给定的备选答案中,也可以给出一个最佳的答案。输出:对视频中的信息进行综合理解,以指定的json文件格式,按照数据说明中的关键词(key)填充描述型的文本信息(value,中文/英文均可以);初赛阶段:排行榜总分=视频理解准确度分数。
2023-11-15 18:20:46
244
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人