R语言中的模拟过程和离散化:泊松过程和维纳过程

本文探讨了如何结合泊松过程与Wiener过程的算法,特别是在生成泊松过程中模拟跳跃时间和幅度,以及如何处理离散化问题。通过R语言实现,介绍了两种方法:一是基于trunc函数离散化Wiener过程;二是利用泊松过程的均匀性避免同一时间间隔内多次跳跃。通过指数定律检验,验证了方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近我们被客户要求撰写关于泊松过程的研究报告,包括一些图形和统计输出。

本文中,我们讨论了一个将Poisson过程与Wiener过程结合在一起的最佳算法的问题。实际上,为了生成泊松过程,我们总是习惯于模拟跳跃之间的持续时间。我们使用给定时间间隔内跳跃的均匀性,该条件取决于跳跃的次数。

首先,我们可以生成一个可能具有漂移的维纳过程,然后在其旁边,我们可以生成指数定律(这将对应于跳跃之间的时间),还可以生成跳跃幅度 。我们在这里

要么 。我们首先通过注意

其中增量是高斯(均值和方差),并且彼此独立。至于跳跃之间的持续时间,它们是独立的平均指数定律。这是代码,

n=1000
h=1/n
lambda=5
set.seed(2)
W=c(0,cumsum(rnorm(n,sd=sqrt(h))))
W=rexp(100,lambda)
N=sum(cumsum(W)<1)
T=cumsum(W[1:N])
X=-rexp(N)

问题是对于维纳过程,我们必须离散化,而对于复合泊松过程,我们不能离散化。但是,他们有相同的时间范围。第一种方法是建立trunc函数 


W[trunc(n*t)+1]+sum(X[T<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值