最近我们被客户要求撰写关于泊松过程的研究报告,包括一些图形和统计输出。
本文中,我们讨论了一个将Poisson过程与Wiener过程结合在一起的最佳算法的问题。实际上,为了生成泊松过程,我们总是习惯于模拟跳跃之间的持续时间。我们使用给定时间间隔内跳跃的均匀性,该条件取决于跳跃的次数。
首先,我们可以生成一个可能具有漂移的维纳过程,然后在其旁边,我们可以生成指数定律(这将对应于跳跃之间的时间),还可以生成跳跃幅度 。我们在这里
要么 。我们首先通过注意
其中增量是高斯(均值和方差),并且彼此独立。至于跳跃之间的持续时间,它们是独立的平均指数定律。这是代码,
n=1000
h=1/n
lambda=5
set.seed(2)
W=c(0,cumsum(rnorm(n,sd=sqrt(h))))
W=rexp(100,lambda)
N=sum(cumsum(W)<1)
T=cumsum(W[1:N])
X=-rexp(N)
问题是对于维纳过程,我们必须离散化,而对于复合泊松过程,我们不能离散化。但是,他们有相同的时间范围。第一种方法是建立trunc函数
W[trunc(n*t)+1]+sum(X[T<