项目简介
AI Infra Guard(AI Infrastructure Guard) 是由混元安全团队-朱雀实验室研发的一款高效、轻量、易用的AI基础设施安全评估工具,专为发现和检测AI系统潜在安全风险而设计。
功能特性
● 高效扫描
支持 28 种 AI 框架指纹识别
涵盖 200+ 安全漏洞数据库
快速且无害发现AI基础设施的安全威胁
● 易于使用
开箱即用,无复杂配置
指纹、漏洞YAML规则定义
灵活的匹配语法
● 轻量级
核心组件简洁高效
二进制体积小,资源占用低
跨平台支持
适用场景
针对企业内AI基础设施系统的漏洞检测和修复,可用于AI 开发环境安全检测、巡检、运维,DevSecOps 集成等场景。
快速预览
指定内网域名或ip,工具便会识别并输出目标所使用的AI组件以及对应的CVE漏洞,使用AI分析功能可根据组件漏洞给出对应修复方案。
● 快速使用
使用-target指定目标,可-target example1.com -target example2.com 指定多个目标。
● AI分析
通过参数-ai开启ai报告功能,默认使用混元大模型总结,如使用其他模型请设置环境变量 OPENAI_API_KEY、OPENAI_BASE_URL、OPENAI_MODEL。
安装与使用
● 安装
下载地址: https://github.com/Tencent/AI-Infra-Guard/releases
● 使用
单个目标
./ai-infra-guard -target [IP/域名]
多个目标
./ai-infra-guard -target [IP/域名] -target [IP/域名]
从文件读取
./ai-infra-guard -file target.txt
AI分析
./ai-infra-guard -target [IP/域名] -ai -token [混元token]
指纹匹配规则
AI Infra Guard 基于WEB指纹识别组件,指纹规则在data/fingerprints目录中,漏洞匹配规则在data/vuln目录中。
示例:Gradio指纹
info:
name: gradio
author: Security Team
severity: info
metadata:
product: gradio
vendor: gradio
http:
- method: GET
path: '/'
matchers:
- body="<script>window.gradio_config = {" || body="document.getElementsByTagName(\"gradio-app\");"
指纹匹配语法
匹配位置
● 标题(title)
● 正文(body)
● 请求头(header)
● 图标哈希(icon)
逻辑运算符
● `=` 模糊匹配
● `==` 全等
● `!=` 不等
● `~=` 正则匹配
● `&&` 与
● `||` 或
● `()` 括号分组
关于腾讯朱雀实验室
朱雀实验室由腾讯安全平台部于2019年成立,聚焦AI与大模型基础设施安全、大模型内生安全与大模型赋能安全等领域的前沿技术研究与业务安全保障。
项目地址
Github地址:https://github.com/Tencent/AI-Infra-Guard
请给项目 一个 Star !
欢迎提出你的 issue 和 PR!
关注腾讯开源公众号
获取更多最新腾讯官方开源信息!