DeepLab论文解读

论文:DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

论文核心:这篇文章主要讲了在做DCNN时遇到的三个挑战以及他们是如何解决的。

预习内容:这个论文是做语义分割的,如果没有读过其他的语义分割论文,可能需要先补习一下(传送门)。FCN、CRFasRNN、DeepLab等,都是有非常多的相似点的。

主页:http://liangchiehchen.com/projects/DeepLab.html

DCNN做分割的三个问题:

  • 特征的分辨率减小。
  • 目标可能在不同尺度下。
  • DCNN的不变性导致定位的精度降低。

1

这个三个问题都是很现实的,第一个问题体现在用VGG等网络时,多次的Pooling导致最后的特征尺寸过小,很多细节都被忽略了。在FCN当中,作者在第一层用了个100的Padding,这是一种办法,但是太过暴力了,因为这个100 的Padding是固定数字,没有特征。而DeepLab使用的是将后面两层的pooling的stride设置为1,这样就不用再下采样了。

但是这样也引入了一个新的问题:没法用已经训练好的网络初始化了。因为尺寸改变了,导致网络后面层的感受野发生大幅变化,所以后面层应该是很难 fine-tuning 出来的。那怎么办呢?作者就使用 atrous convolution。具体操作看论文哈。

2

那么第二个问题呢?确实在图像中,目标有时远有时近。这个问题在SIFT算法中是引入了SPP,那么这里显然也可以故技重施。作者使用了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值