终于解决了安装torch的同时cuda版本

两步解决conda安装pytorch时下载速度慢or超时的问题_anaconda下载pytorcg太慢-CSDN博客

pip安装包超时的几种解决办法 - 知乎 (zhihu.com)

谢谢你,超时侠!

困扰我整整一个周末的问题(详见上篇文章)

然后一定一定要避坑的是

# CUDA 11.7
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
# CUDA 11.8
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118

前者是cpu版本的,要安装后者有cu118的!!!(要安装cu117可以把118改成117!)

但是尚不确定为什么最新的是用pip3 而旧的统一用pip(最新pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118)

也尚不确定为什么是这样的:

然后发现只要 一安装成功,后面再次

pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118 就不会超时了

神奇!

结果最新的安装成功了。再也不用加上–default-timeout=1000。

笔者还发现,如果channels只有defaults,当你输入pip install torch==2.0.1+cu118
依然会导致Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple然后报错

但是conda config --show 的结果:

channels:
  - defaults

default_channels:
  - https://repo.anaconda.com/pkgs/main
  - https://repo.anaconda.com/pkgs/r
  - https://repo.anaconda.com/pkgs/msys2

莫非系统会自动地识别我在中国所以用上了清华源!?(所以还是去官方下载吧)

<think>嗯,用户想安装CUDA版本对应的PyTorch。首先,我需要确定安装PyTorch的正确步骤。记得PyTorch版本需要和CUDA版本匹配,所以用户得先检查自己电脑上的CUDA版本。通常可以用nvidia-smi命令或者nvcc --version来查看。不过这两个命令显示的版本可能不同,nvidia-smi显示的是驱动支持的CUDA版本,而nvcc显示的是当前安装的运行时版本。用户需要根据nvcc的版本来选择PyTorch。 接下来,用户需要访问PyTorch官网,使用他们的配置工具生成安装命令。官网会根据选择的CUDA版本提供对应的pip或conda命令。这时候要提醒用户注意,如果使用conda安装,有时候可能会自动安装CUDA相关的依赖,但最好还是先确认CUDA已经正确安装。 另外,用户可能会遇到安装CUDA不可用的情况,这时候需要检查torch.cuda.is_available()的返回值。如果是False,可能是CUDA版本不匹配,或者PyTorch版本不对,需要重新安装正确的版本。还有可能用户没有安装NVIDIA驱动,或者驱动版本太旧,需要更新。 还有一点,用户如果使用虚拟环境的话,记得在虚拟环境中安装PyTorch,而不是全局安装。这样可以避免版本冲突的问题。还有,如果用户的CUDA版本比较新,PyTorch可能还没有对应的预编译版本,这时候可能需要从源码编译,不过这种情况不太常见,大部分时候官网都有支持。 最后,用户可能需要安装额外的库,比如torchvision和torchaudio,这些通常和PyTorch一起安装,确保版本兼容性。总之,步骤就是检查CUDA版本,选择对应的PyTorch安装命令,安装后验证是否成功。如果遇到问题,检查驱动、CUDA版本以及安装命令是否正确。</think>以下是安装CUDA版本匹配的PyTorch的详细步骤: --- ### 第一步:确定CUDA版本 1. 打开终端(Linux/macOS)或命令提示符(Windows) 2. 输入以下命令查看CUDA版本: ```bash nvcc --version ``` 或 ```bash cat /usr/local/cuda/version.txt ``` - 如果显示`nvcc: command not found`,说明CUDA安装,需先安装CUDA Toolkit - 注意:`nvidia-smi`显示的驱动支持的最高CUDA版本,实际安装以`nvcc`为准 --- ### 第二步:选择PyTorch版本 访问PyTorch官网的安装命令生成器: $$ \text{https://pytorch.org/get-started/locally/} $$ 1. 选择操作系统 2. 选择包管理器(推荐使用conda或pip) 3. 选择CUDA版本(需与第一步查询结果一致) 4. 复制生成的安装命令 --- ### 第三步:执行安装命令 示例(假设CUDA 11.8): ```bash # conda安装方式 conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia # pip安装方式 pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` --- ### 第四步:验证安装 1. 启动Python环境 2. 执行验证代码: ```python import torch print(torch.__version__) # 查看PyTorch版本 print(torch.cuda.is_available()) # 应返回True print(torch.version.cuda) # 显示的CUDA版本应与第一步一致 ``` --- ### 常见问题处理 | 现象 | 解决方法 | |------|----------| | `torch.cuda.is_available()`返回False | 1. 检查CUDA与PyTorch版本匹配性<br>2. 更新NVIDIA驱动<br>3. 重装CUDA Toolkit | | 安装速度慢 | 使用清华镜像源:`-i https://pypi.tuna.tsinghua.edu.cn/simple` | | 版本冲突 | 创建新的conda虚拟环境隔离安装 | --- ### 注意事项 1. 推荐使用Anaconda环境管理 2. 确保NVIDIA驱动版本CUDA版本要求 3. 完整GPU支持需要安装: - CUDA Toolkit - cuDNN - NVIDIA驱动 如需安装CUDA Toolkit,请访问NVIDIA官网: $$ \text{https://developer.nvidia.com/cuda-toolkit-archive} $$
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值